Appendix I: Pesticide active ingredients looked up for Pesticides and Parkinson's Committee public group. Sources include NSPIRS registration data, EPA registration information, Agency for Toxic Substances and Disease Registry, and the Compendium of Pesticide Common Names.

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Chemical Class</th>
<th>Registration Status</th>
<th>Some Potential NM Sites Include</th>
<th>Other Sites Include</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maneb</td>
<td>Fungicide</td>
<td>Dithiocarbamate</td>
<td>Inactive</td>
<td>n/a</td>
<td>n/a</td>
<td>Last uses CANCELED in 2010</td>
</tr>
<tr>
<td>Heptachlor</td>
<td>Insecticide</td>
<td>Cyclodiene</td>
<td>Inactive</td>
<td>n/a</td>
<td>n/a</td>
<td>Most uses CANCELED in 1974; final cancelation in 1999</td>
</tr>
<tr>
<td>Endrin</td>
<td>Insecticide</td>
<td>Cyclodiene</td>
<td>Inactive</td>
<td>n/a</td>
<td>n/a</td>
<td>Most uses CANCELED in 1986; final cancelation in 1991</td>
</tr>
<tr>
<td>Aldrin</td>
<td>Insecticide</td>
<td>Cyclodiene</td>
<td>Inactive</td>
<td>n/a</td>
<td>n/a</td>
<td>CANCELED by USDA in 1970; EPA lifted in 1972 for limited use; final use canceled 1987</td>
</tr>
<tr>
<td>Dieldrin</td>
<td>Insecticide</td>
<td>Cyclodiene</td>
<td>Inactive</td>
<td>n/a</td>
<td>n/a</td>
<td>CANCELED by USDA in 1970; EPA lifted in 1972 for limited use; final use canceled 1987</td>
</tr>
<tr>
<td>Name</td>
<td>Type</td>
<td>Chemical Class</td>
<td>Registration Status</td>
<td>Some Potential NM Sites Include</td>
<td>Other Sites Include</td>
<td>Notes</td>
</tr>
<tr>
<td>----------</td>
<td>---------------</td>
<td>---------------------------------</td>
<td>---------------------</td>
<td>--------------------------------</td>
<td>---------------------</td>
<td>--</td>
</tr>
<tr>
<td>Benomyl</td>
<td>Fungicide</td>
<td>Benzimidazole fungicide; carbamate acaricide</td>
<td>Inactive</td>
<td>n/a</td>
<td>n/a</td>
<td>CANCELED in '80s-'90s</td>
</tr>
<tr>
<td>Zineb</td>
<td>Fungicide</td>
<td>Dithiocarbamate</td>
<td>Inactive</td>
<td>n/a</td>
<td>n/a</td>
<td>CANCELED in 1991</td>
</tr>
<tr>
<td>Lindane</td>
<td>Insecticide</td>
<td>Organochlorine</td>
<td>Inactive</td>
<td>n/a</td>
<td>n/a</td>
<td>Most uses CANCELED by 1999; all uses canceled by 2006. Pharmaceutical use remains.</td>
</tr>
<tr>
<td>Ziram</td>
<td>Fungicide</td>
<td>Dithiocarbamate</td>
<td>Active</td>
<td>Pecans, ornamentals</td>
<td>Berries, many fruits, flowers</td>
<td>Fungal diseases rare in NM</td>
</tr>
<tr>
<td>Rotenone</td>
<td>Piscicide, insecticide</td>
<td>Botanical</td>
<td>Active Restricted 2 piscicides registered in 2013</td>
<td>Aquatic sites for control of undesirable fish</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propargite</td>
<td>Miticide</td>
<td>Sulfite</td>
<td>Active Restricted 4 registered in 2013</td>
<td>Potatoes, corn, beans, peanuts, cotton, alfalfa</td>
<td>Berries, citrus, mint, hops, carrots, many fruits</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Type</td>
<td>Chemical Class</td>
<td>Registration Status</td>
<td>Some Potential NM Sites Include</td>
<td>Other Sites Include</td>
<td>Notes</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------</td>
<td>------------------</td>
<td>---------------------</td>
<td>--------------------------------</td>
<td>--------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Diazinon</td>
<td>Insecticide</td>
<td>Organophosphorus</td>
<td>Active Many are restricted 9 registered in 2013</td>
<td>Lettuce, onions, nursery plants, dairy cattle, beef cattle</td>
<td>Grapes, many veggies, berries, melons, fruits</td>
<td></td>
</tr>
<tr>
<td>Mancozeb</td>
<td>Fungicide</td>
<td>Dithiocarbamate</td>
<td>Active Not restricted 44 registered in 2013</td>
<td>Potatoes, onions</td>
<td>Melons, cucurbits, mangos, applies, citrus, cranberries</td>
<td>Fungal diseases rare in NM</td>
</tr>
<tr>
<td>Endosulfan</td>
<td>Insecticide/miticide</td>
<td>Cyclodiene</td>
<td>Active Restricted 3 registered in 2013</td>
<td>Pecans, cotton, wheat, ornamentals 3 registered in 2013</td>
<td>Cucurbits, many vegetables, peaches, cherries, tobacco</td>
<td></td>
</tr>
<tr>
<td>Permethrin</td>
<td>Insecticide/miticide</td>
<td>Pyrethroid</td>
<td>Active Most are not restricted 556 registered in 2013</td>
<td>Many sites; many are nonagricultural. Homes, yards, garden dusts, dogs & cats, buildings, lettuce, pecans, many vegetables, ornamentals, etc.</td>
<td>Berries, many fruits, flowers, many vegetables, nuts, etc.</td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Type</td>
<td>Chemical Class</td>
<td>Registration Status</td>
<td>Some Potential NM Sites Include</td>
<td>Other Sites Include</td>
<td>Notes</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------</td>
<td>----------------</td>
<td>---------------------</td>
<td>---</td>
<td>-------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Cypermethrin</td>
<td>Insecticide/miticide</td>
<td>Pyrethroid</td>
<td>Active</td>
<td>Many sites; many are nonagricultural. Foggers, roach sprays, pecans, onions, cotton, lettuce</td>
<td>Other greens, broccoli, cauliflower, garlic</td>
<td></td>
</tr>
<tr>
<td>Chlorpyrifos</td>
<td>Insecticide/miticide</td>
<td>Organophosphorus</td>
<td>Active</td>
<td>Alfalfa, cotton, onions, pecan, cattle, wood products, industrial sites, ant dens, vector control</td>
<td>Citrus, soybeans, tobacco, many fruits, many vegetables</td>
<td></td>
</tr>
<tr>
<td>Methomyl</td>
<td>Insecticide/miticide</td>
<td>Carbamate</td>
<td>Active</td>
<td>Many food crops, restaurants, sod, food processing plants</td>
<td>Fruits, vegetables, grains, tobacco, mint, barns</td>
<td></td>
</tr>
<tr>
<td>2,4-D</td>
<td>Herbicide</td>
<td>Phenoxyacetic</td>
<td>Active</td>
<td>Many agricultural & nonagricultural sites</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Name</td>
<td>Type</td>
<td>Chemical Class</td>
<td>Registration Status</td>
<td>Some Potential NM Sites Include</td>
<td>Other Sites Include</td>
<td>Notes</td>
</tr>
<tr>
<td>---------</td>
<td>-----------------------------</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td>-------------------------------</td>
<td>---------------------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>Paraquat</td>
<td>Herbicide, desiccant</td>
<td>Quaternary ammonium</td>
<td>Active Restricted</td>
<td>Many agricultural sites.</td>
<td>Berries, citrus, greens, melons,</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>12 registered in 2013</td>
<td>Pecans, alfalfa, cotton, peanuts, grapes, lettuce</td>
<td>many fruits, many vegetables, soybeans, tobacco, grains, ornamentals, sod, conifers</td>
<td></td>
</tr>
</tbody>
</table>
Appendix II: Results of PubMed Search on July 2nd, 2013
((Parkinson's Disease) AND pesticide) OR insecticide, herbicide, rodenticide, fungicide

Items 1 - 200 of 1547 (Display the 200 citations in PubMed)

1. **The Parkinson's disease protein DJ-1 binds metals and protects against metal induced cytotoxicity.**
 PMID: 23792957 [PubMed - as supplied by publisher] Free Article
 Related citations

2. **Rotenone induces neuronal death by microglial phagocytosis of neurons.**
 Emmrich JV, Hornik TC, Neher JJ, Brown GC.
 PMID: 23789887 [PubMed - as supplied by publisher]
 Related citations

3. **Dopaminergic neurotoxicity of S-ethyl N,N-dipropylthiocarbamate (EPTC), molinate, and S-methyl-N,N-diethylthiocarbamate (MeDETC) in Caenorhabditis elegans.**
 Caiito SW, Valentine WM, Aschner M.
 PMID: 23786526 [PubMed - as supplied by publisher]
 Related citations

4. **Cellular Localization of Dieldrin and Structure-Activity Relationship of Dieldrin Analogues in Dopaminergic Cells.**
 Allen EM, Florang VR, Davenport LL, Jinsmaa Y, Doorn JA.
 PMID: 23763672 [PubMed - as supplied by publisher]
 Related citations

5. **Involvement of NF Kappa B in Potentiated Effect of Mn-containing Dithiocarbamates on MPP+ Induced Cell Death.**
 Williams CA, Lin Y, Maynard A, Cheng SY.
 PMID: 23744253 [PubMed - as supplied by publisher]
 Related citations

6. **Exposure to pesticides or solvents and risk of Parkinson disease.**
 Pezzoli G, Cereda E.
Related citations

7. **Differential Effects of Methyl-4-Phenylpyridinium Ion, Rotenone, and Paraquat on Differentiated SH-SY5Y Cells.**
 Martins JB, Bastos Mde L, Carvalho F, Capela JP.

Related citations

8. **Rotenone Could Activate Microglia Through NFκB Associated Pathway.**
 Yuan YH, Sun JD, Wu MM, Hu JF, Peng SY, Chen NH.
 PMID: 23645222 [PubMed - in process]

Related citations

9. **Sodium butyrate improves locomotor impairment and early mortality in a rotenone-induced Drosophila model of Parkinson's disease.**
 St Laurent R, O'Brien LM, Ahmad ST.
 PMID: 23623990 [PubMed - in process]

Related citations

10. **Functional paraoxonase 1 variants modify the risk of Parkinson's disease due to organophosphate exposure.**
 Lee PC, Rhodes SL, Sinsheimer JS, Bronstein J, Ritz B.
 PMID: 23602893 [PubMed - in process]

Related citations

11. **Construction of photoenergetic mitochondria in cultured mammalian cells.**
 Hara KY, Wada T, Kino K, Asahi T, Sawamura N.

Related citations

12. **Neonatal exposure to lipopolysaccharide enhances accumulation of α-synuclein aggregation and dopamine transporter protein expression in the substantia nigra in responses to rotenone challenge in later life.**
 Toxicology. 2013 Jun 7;308:96-103. doi: 10.1016/j.tox.2013.03.014. Epub 2013 Apr 5.
 PMID: 23567316 [PubMed - in process]
Related citations

13. [Neurotoxicity of pesticides: its relationship with neurodegenerative diseases].
 Thany SH, Reynier P, Lenaers G.
 PMID: 23544381 [PubMed - indexed for MEDLINE]

Related citations

14. Specific Pesticide-Dependent Increases in α-Synuclein Levels in Human Neuroblastoma (SH-SY5Y) and Melanoma (SK-MEL-2) Cell Lines.
 Chorfa A, Bétemps D, Morignat E, Lazizzera C, Hogeveen K, Andrieu T, Baron T.
 PMID: 23535362 [PubMed - in process]

Related citations

 PMID: 23507417 [PubMed - in process]

Related citations

 Bernstein AI, O'Malley KL.
 PMID: 23500530 [PubMed - indexed for MEDLINE]

Related citations

17. PACAP deficiency sensitizes nigrostriatal dopaminergic neurons to paraquat-induced damage and modulates central and peripheral inflammatory activation in mice.
 PMID: 23500093 [PubMed - in process]

Related citations

18. Chronic exposure to rotenone, a dopaminergic toxin, results in peripheral neuropathy associated with dopaminergic damage.
 Binienda ZK, Sarkar S, Mohammed-Saeed L, Gough B, Beaudoin MA, Ali SF, Paule MG, Imam SZ.
Ryu HW, Oh WK, Jang IS, Park J.

Mostafalou S, Abdollahi M.

23. Protective effect of six Kaixin San formulas on nerve cells injured by different materials.
Zhao HX, Zhou XJ, Hu Y, Dong XZ, Cao Y, Liu P.

Taetzsch T, Block ML.
Related citations

25. [Parkinson's disease due to laboral exposition to paraquat].
 León-Verastegui AG.
 PMID: 23331754 [PubMed - indexed for MEDLINE]
 Related citations

 Costa AC, Loh SH, Martins LM.
 Related citations

27. Neuroactive insecticides: targets, selectivity, resistance, and secondary effects.
 Casida JE, Durkin KA.
 PMID: 23317040 [PubMed - indexed for MEDLINE]
 Related citations

28. The interplay between environmental and genetic factors in Parkinson's disease susceptibility: the evidence for pesticides.
 Dardiotis E, Xiromerisiou G, Hadжichristodoulou C, Tsatsakis AM, Wilks MF, Hadjiigeorgiou GM.
 PMID: 23295711 [PubMed - in process]
 Related citations

29. The behavioural and neuropathological impact of intranigral AAV-α-synuclein is exacerbated by systemic infusion of the Parkinson's disease-associated pesticide, rotenone, in rats.
 Mulcahy P, O'Doherty A, Paucard A, O'Brien T, Kirik D, Dowd E.
 PMID: 23295396 [PubMed - in process]
 Related citations

30. Astaxanthin protects against MPP(+) -induced oxidative stress in PC12 cells via the HO-1/NOX2 axis.
 Ye Q, Huang B, Zhang X, Zhu Y, Chen X.
 Related citations

31. Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease.

Related citations
32. **Rotenone inhibits autophagic flux prior to inducing cell death.**

Related citations
33. **Piracetam and vinpocetine ameliorate rotenone-induced Parkinsonism in rats.**

Related citations
34. **The role of pesticide exposure in the genesis of Parkinson's disease: epidemiological studies and experimental data.**

Related citations
35. **Environmental toxicants as extrinsic epigenetic factors for Parkinsonism: studies employing transgenic C. elegans model.**

Related citations
36. **Elicitation of dopaminergic features of Parkinson's disease in C. elegans by monocrotophos, an organophosphorous insecticide.**

Related citations
37. **Effect of various classes of pesticides on expression of stress genes in transgenic C. elegans model of Parkinson's disease.**
Jadiya P, Mir SS, Nazir A.
38. The relative sensitivity of macrophyte and algal species to herbicides and fungicides: an analysis using species sensitivity distributions.
 Giddings JM, Arts G, Hommen U.
 PMID: 23229339 [PubMed - in process]

39. Thioredoxin reductase deficiency potentiates oxidative stress, mitochondrial dysfunction and cell death in dopaminergic cells.
 Lopert P, Day BJ, Patel M.

40. Environmental toxins trigger PD-like progression via increased alpha-synuclein release from enteric neurons in mice.

41. Colchicine protects dopaminergic neurons in a rat model of Parkinson's disease.
 CNS Neurol Disord Drug Targets. 2012 Nov 1;11(7):836-43.
 PMID: 23198691 [PubMed - indexed for MEDLINE]

42. Expression of human E46K-mutated α-synuclein in BAC-transgenic rats replicates early-stage Parkinson's disease features and enhances vulnerability to mitochondrial impairment.
 Cannon JR, Geghman KD, Tapias V, Sew T, Dail MK, Li C, Greenamyre JT.
 PMID: 23153578 [PubMed - indexed for MEDLINE]

43. p10, the N-terminal domain of p35, protects against CDK5/p25-induced neurotoxicity.
 Zhang L, Liu W, Szumlinski KK, Lew J.
44. Traumatic brain injury, paraquat exposure, and their relationship to Parkinson disease.
Lee PC, Bordelon Y, Bronstein J, Ritz B.
PMID: 23150532 [PubMed-indexed for MEDLINE]

45. Deletion in exon 5 of the SNCA gene and exposure to rotenone leads to oligomerization of α-synuclein and toxicity to PC12 cells.
Ma KL, Song LK, Long WA, Yuan YH, Zhang Y, Song XY, Niu F, Han N, Chen NH.
PMID: 23128054 [PubMed-indexed for MEDLINE]

46. Heterozygous mutations in the FGF8, SHH and nodal/transfoming growth factor beta pathways do not confer increased dopaminergic neuron vulnerability--a zebrafish study.
Lo C, Flinn LJ, Bandmann O.
PMID: 23123778 [PubMed-indexed for MEDLINE]

47. Functional GPR37 trafficking protects against toxicity induced by 6-OHDA, MPP+ or rotenone in a catecholaminergic cell line.
Lundius EG, Stroth N, Vukojević V, Terenius L, Svenningsson P.
PMID: 23121049 [PubMed-indexed for MEDLINE]

48. ω-3 fatty acid eicosapentaenoic acid attenuates MPP+-induced neurodegeneration in fully differentiated human SH-SY5Y and primary mesencephalic cells.
Luchtman DW, Meng Q, Wang X, Shao D, Song C.
PMID: 23106698 [PubMed-indexed for MEDLINE]

49. Parkinson's disease: evidence for environmental risk factors.
Kieburz K, Wunderle KB.
PMID: 23097348 [PubMed-in-process]
50. Occupational pesticide exposure and screening tests for neurodegenerative disease among an elderly population in Costa Rica.
Steenland K, Wesseling C, Román N, Quirós I, Juncos JL.
PMID: 23092715 [PubMed - indexed for MEDLINE] Related citations

51. Inhibition of rho kinase enhances survival of dopaminergic neurons and attenuates axonal loss in a mouse model of Parkinson's disease.
Tönges L, Frank T, Tatenhorst L, Saal KA, Koch JC, Szego ÉM, Bähr M, Weishaupt JH, Lingor P.

52. Meta-analysis of early nonmotor features and risk factors for Parkinson disease.

53. DJ-1 expression modulates astrocyte-mediated protection against neuronal oxidative stress.
Mullett SJ, Di Maio R, Greenamyre JT, Hinkle DA.
PMID: 23065353 [PubMed - in process] Related citations

Tsuboi Y.
PMID: 23055790 [PubMed] Free PMC Article Related citations

55. Low doses of paraquat and polyphenols prolong life span and locomotor activity in knock-down parkin Drosophila melanogaster exposed to oxidative stress stimuli: implication in autosomal recessive juvenile Parkinsonism.
Bonilla-Ramirez L, Jimenez-Del-Rio M, Velez-Pardo C.
PMID: 23046578 [PubMed - indexed for MEDLINE] Related citations

56. Genetic modification of the association of paraquat and Parkinson's disease.

Related citations

57. Neuroprotective efficacy of aminopropyl carbazoles in a mouse model of Parkinson disease.

Related citations

58. Combined exposure to Maneb and Paraquat alters transcriptional regulation of neurogenesis-related genes in mice models of Parkinson's disease.

Related citations

59. Dysregulated expression of secretogranin III is involved in neurotoxin-induced dopaminergic neuron apoptosis.

PMID: 22987761 [PubMed - indexed for MEDLINE]

Related citations

Erbaş O, Oltulu F, Taşkiran D.

PMID: 22985856 [PubMed - indexed for MEDLINE]

Related citations

61. Controlled release of rasagiline mesylate promotes neuroprotection in a rotenone-induced advanced model of Parkinson's disease.

Fernández M, Barcia E, Fernández-Carballido A, Garcia L, Slowing K, Negro S.

PMID: 22985602 [PubMed - indexed for MEDLINE]
62. **Chronic central nervous system effects of pesticides: state-of-the-art.**
PMID: 22981160 [PubMed - indexed for MEDLINE]

63. **Nitrosative stress mediated misfolded protein aggregation mitigated by Na-D-β-hydroxybutyrate intervention.**
Kabiraj P, Pal R, Varela-Ramirez A, Miranda M, Narayan M.
PMID: 22974977 [PubMed - indexed for MEDLINE]

64. **MDR1 C3435T polymorphism and interaction with environmental factors in risk of Parkinson's disease: a case-control study in Japan.**

65. **Transcriptome analysis of a rotenone model of parkinsonism reveals complex I-tied and -untied toxicity mechanisms common to neurodegenerative diseases.**
Cabeza-Arvelaiz Y, Schiestl RH.

66. **Distinct effects of rotenone, 1-methyl-4-phenylpyridinium and 6-hydroxydopamine on cellular bioenergetics and cell death.**
Giordano S, Lee J, Darley-Usmar VM, Zhang J.

67. **Central nervous system damage due to acute paraquat poisoning: a neuroimaging study with 3.0 T MRI.**
27. PMID: 22947519 [PubMed - indexed for MEDLINE]

Related citations

68. A current review of cypermethrin-induced neurotoxicity and nigrostriatal dopaminergic neurodegeneration.
Singh AK, Tiwari MN, Prakash O, Singh MP.

Related citations

69. Glycogen synthase kinase-3β activation mediates rotenone-induced cytotoxicity with the involvement of microtubule destabilization.
Hongo H, Kihara T, Kume T, Izumi Y, Niidome T, Sugimoto H, Akaike A.
PMID: 22922102 [PubMed - indexed for MEDLINE]

Related citations

70. Quercetin and sesamin protect dopaminergic cells from MPP+-induced neuroinflammation in a microglial (N9)-neuronal (PC12) coculture system.
Bournival J, Plouffe M, Renaud J, Provencher C, Martinoli MG.

Related citations

Janda E, Isidoro C, Carresi C, Mollace V.
PMID: 22899187 [PubMed - in process]

Related citations

72. DJ-1 protects dopaminergic neurons against rotenone-induced apoptosis by enhancing ERK-dependent mitophagy.
Gao H, Yang W, Qi Z, Lu L, Duan C, Zhao C, Yang H.
PMID: 22898350 [PubMed - indexed for MEDLINE]

Related citations

73. Lipid-like components released from degenerating dopaminergic neurons trigger the dynamic migration of microglia.
Kim H, Park JH, Kim K.
Biochem Biophys Res Commun. 2012 Sep 14;426(1):18-25. doi:
PMID: 22898047 [PubMed - indexed for MEDLINE]

Related citations

74. **Activation of transcription factor MEF2D by bis(3)-cognitin protects dopaminergic neurons and ameliorates Parkinsonian motor defects.**
PMID: 22891246 [PubMed - indexed for MEDLINE]

Related citations

75. **ROS-dependent regulation of Parkin and DJ-1 localization during oxidative stress in neurons.**
Joselin AP, Hewitt SJ, Callaghan SM, Kim RH, Chung YH, Mak TW, Shen J, Slack RS, Park DS.
PMID: 22872702 [PubMed - indexed for MEDLINE]

Related citations

76. **3-(Fur-2-yl)-10-(2-phenylethyl)-[1,2,4]triazino[4,3-a]benzimidazol-4(10H)-one, a novel adenosine receptor antagonist with A(2A)-mediated neuroprotective effects.**
Scatena A, Fornai F, Trincavelli ML, Taliani S, Daniele S, Pugliesi I, Cosconati S, Martini C, Da Settimo F.

Related citations

77. **5'-Aza-dC sensitizes paraquat toxic effects on PC12 cell.**
Kong M, Ba M, Liang H, Ma L, Yu Q, Yu T, Wang Y.
PMID: 22796470 [PubMed - indexed for MEDLINE]

Related citations

78. **Whole genome expression profile in neuroblastoma cells exposed to 1-methyl-4-phenylpyridine.**
Mazzio E, Soliman KF.
PMID: 22776087 [PubMed - indexed for MEDLINE]

Related citations

79. **Parkinson's disease and the environment: beyond pesticides.**
PMID: 22774228 [PubMed - indexed for MEDLINE]

Related citations

80. IL6 protects MN9D cells and midbrain dopaminergic neurons from MPP+-induced neurodegeneration.
PMID: 22772723 [PubMed - indexed for MEDLINE]

Related citations

81. Clavulanic acid inhibits MPP+-induced ROS generation and subsequent loss of dopaminergic cells.
PMID: 22750587 [PubMed - indexed for MEDLINE]

Related citations

82. Epigallocatechin-3-gallate suppresses 1-methyl-4-phenyl-pyridine-induced oxidative stress in PC12 cells via the SIRT1/PGC-1α signaling pathway.

Related citations

83. Induction of apoptotic erythrocyte death by rotenone.
PMID: 22727881 [PubMed - indexed for MEDLINE]

Related citations

84. Protective role of glutathione reductase in paraquat induced neurotoxicity.
PMID: 22721943 [PubMed - indexed for MEDLINE]

Related citations

85. Regenerative effects of umbilical cord matrix cells (UCMCs) in a rodent model of rotenone neurotoxicity.
Salama M, Eldakroory SA, Eltantawy D, Ghanem AA, Elghaffar HA, Elhusseiny M, Elhak
86. Rothenone-induced parkinsonism elicits behavioral impairments and differential expression of parkin, heat shock proteins and caspases in the rat.
Sonia Angeline M, Chaterjee P, Anand K, Ambasta RK, Kumar P.
PMID: 22710069 [PubMed - indexed for MEDLINE]
Related citations

87. Alterations in bioenergetic function induced by Parkinson's disease mimetic compounds: lack of correlation with superoxide generation.
Dranka BP, Zielonka J, Kanthasamy AG, Kalyanaraman B.
PMID: 22708893 [PubMed - indexed for MEDLINE]
Related citations

88. Association of a protective paraoxonase 1 (PON1) polymorphism in Parkinson's disease.
PMID: 22704918 [PubMed - indexed for MEDLINE]
Related citations

89. Parkinson disease and Alzheimer disease: environmental risk factors.
Campdelacreu J.
PMID: 22703631 [PubMed - as supplied by publisher] Free Article
Related citations

90. Occupational exposure to pesticides and Parkinson's disease: a systematic review and meta-analysis of cohort studies.
Van Maele-Fabry G, Hoet P, Vilain F, Lison D.
PMID: 22698719 [PubMed - indexed for MEDLINE]
Related citations

91. Risk factors for Parkinson's disease may differ in men and women: an exploratory study.

Related citations

92. Salidroside protects PC12 cells from MPP⁺-induced apoptosis via activation of the PI3K/Akt pathway.
PMID: 22664423 [PubMed - indexed for MEDLINE]
Related citations

PMID: 22627180 [PubMed - indexed for MEDLINE]
Related citations

94. Urate and its transgenic depletion modulate neuronal vulnerability in a cellular model of Parkinson's disease.
Related citations

95. Mitochondrial complex I inhibitor rotenone-induced toxicity and its potential mechanisms in Parkinson's disease models.
PMID: 22574684 [PubMed - indexed for MEDLINE]
Related citations

96. Concordant signaling pathways produced by pesticide exposure in mice correspond to pathways identified in human Parkinson's disease.
Related citations

97. Viral-toxin interactions and Parkinson's disease: poly I:C priming enhanced the neurodegenerative effects of paraquat.

Related citations

98. The caspase 6 derived N-terminal fragment of DJ-1 promotes apoptosis via increased ROS production.

Related citations

Related citations

100. Glyphosate induced cell death through apoptotic and autophagic mechanisms.

Related citations

101. [Adenovirus vector mediated human 14-3-3 γ gene transfer protects dopaminergic cells against rotenone-induced injury].

Related citations

102. PEP-1-heat shock protein 27 protects from neuronal damage in cells and in a Parkinson's disease mouse model.

Related citations

103. The decrease of dopamine D₂/D₃ receptor densities in the putamen and nucleus caudatus goes parallel with maintained levels of CB₁ cannabinoid receptors in Parkinson's disease: a
preliminary autoradiographic study with the selective dopamine D₂/D₃ antagonist [³H]raclopride and the novel CB₁ inverse agonist [¹²⁵I]SD7015.
Farkas S, Nagy K, Jia Z, Harkany T, Palkovits M, Donohou SR, Pike VW, Halldin C, Máthé D, Csiba L, Gulyás B.
PMID: 22421165 [PubMed - indexed for MEDLINE]
Related citations
Ali SF, Binienda ZK, Imam SZ.
Related citations
105. Is pesticide use related to Parkinson disease? Some clues to heterogeneity in study results.
van der Mark M, Brouwer M, Kromhout H, Nijsse P, Huss A, Vermeulen R.
Related citations
106. Use of PC12 cells and rat superior cervical ganglion sympathetic neurons as models for neuroprotective assays relevant to Parkinson's disease.
Grau CM, Greene LA.
Related citations
107. Decrease in nicotinamide adenine dinucleotide dehydrogenase is related to skin pigmentation.
Nakama M, Murakami Y, Tanaka H, Nakata S.
PMID: 22360328 [PubMed - indexed for MEDLINE]
Related citations
108. Chiral pesticides: identification, description, and environmental implications.
Ulrich EM, Morrison CN, Goldsmith MR, Foreman WT.
PMID: 22350557 [PubMed - indexed for MEDLINE]
Related citations
109. Emerging neurotoxic mechanisms in environmental factors-induced neurodegeneration.
PMID: 22342404 [PubMed - indexed for MEDLINE]
Related citations

10. Resveratrol potentiates cytochrome P450 2d22-mediated neuroprotection in maneb- and paraquat-induced parkinsonism in the mouse.
PMID: 22334051 [PubMed - indexed for MEDLINE]
Related citations

11. Peripheral inflammation increases the deleterious effect of CNS inflammation on the nigrostriatal dopaminergic system.
PMID: 22330755 [PubMed - indexed for MEDLINE]
Related citations

12. Circadian dysfunction in a rotenone-induced parkinsonian rodent model.
PMID: 22324553 [PubMed - indexed for MEDLINE]
Related citations

13. The mitochondrial chaperone protein TRAP1 mitigates α-Synuclein toxicity.
Related citations

14. WldS but not Nmnat1 protects dopaminergic neurites from MPP+ neurotoxicity.
Related citations

15. Industrial toxicants and Parkinson's disease.

121. **Matrix metalloproteinase-3 is activated by HtrA2/Omi in dopaminergic cells: relevance to Parkinson's disease.**

Shin EJ, Kim EM, Lee JA, Rhim H, Hwang O.

PMID: 22265821 [PubMed - indexed for MEDLINE]

Related citations

122. **Reduction of mitoferrin results in abnormal development and extended lifespan in Caenorhabditis elegans.**

Related citations

123. **Animal models of Parkinson's disease.**

Blandini F, Armentero MT.

PMID: 22251459 [PubMed - indexed for MEDLINE]

Related citations

124. **Minocycline prevents paraquat-induced cell death through attenuating endoplasmic reticulum stress and mitochondrial dysfunction.**

Huang CL, Lee YC, Yang YC, Kuo TY, Huang NK.

PMID: 22245251 [PubMed - indexed for MEDLINE]

Related citations

125. **Involvement of NADPH oxidase and glutathione in zinc-induced dopaminergic neurodegeneration in rats: similarity with paraquat neurotoxicity.**

Kumar A, Singh BK, Ahmad I, Shukla S, Patel DK, Srivastava G, Kumar V, Pandey HP, Singh C.

PMID: 22244881 [PubMed - indexed for MEDLINE]

Related citations

126. **Animal models of the non-motor features of Parkinson's disease.**

McDowell K, Chesselet MF.

127. Δ⁹-tetrahydrocannabinol (Δ⁹-THC) exerts a direct neuroprotective effect in a human cell culture model of Parkinson's disease.
 PMID: 22236282 [PubMed - indexed for MEDLINE]

128. A guide to neurotoxic animal models of Parkinson's disease.
 PMID: 22229125 [PubMed - indexed for MEDLINE]

129. Glutathione s-transferase omega 1 activity is sufficient to suppress neurodegeneration in a Drosophila model of Parkinson disease.
 PMID: 22219196 [PubMed - indexed for MEDLINE]

130. Biomonitoring and biomarkers of organophosphate pesticides exposure - state of the art.
 PMID: 22216802 [PubMed - indexed for MEDLINE]

131. Differential effects of dopaminergic neurotoxins on DNA cleavage.
 PMID: 22213117 [PubMed - indexed for MEDLINE]

132. Alteration of GSK-3β in the hippocampus and other brain structures after chronic paraquat administration in rats.
 PMID: 22212922 [PubMed - indexed for MEDLINE]

Related citations
133. **Role of secondary mediators in caffeine-mediated neuroprotection in maneb- and paraquat-induced Parkinson's disease phenotype in the mouse.**
Yadav S, Gupta SP, Srivastava G, Srivastava PK, Singh MP.
PMID: 22201039 [PubMed - indexed for MEDLINE]
Related citations

134. **Redox modification of Akt mediated by the dopaminergic neurotoxin MPTP, in mouse midbrain, leads to down-regulation of pAkt.**
Durgadoss L, Nidadavolu P, Valli RK, Saeed U, Mishra M, Seth P, Ravindranath V.
Related citations

135. **Development and characterisation of a novel rat model of Parkinson's disease induced by sequential intranigral administration of AAV-α-synuclein and the pesticide, rotenone.**
Mulcahy P, O'Doherty A, Paucard A, O'Brien T, Kirik D, Dowd E.
PMID: 22198020 [PubMed - indexed for MEDLINE]
Related citations

136. **Organochlorine insecticides lindane and dieldrin and their binary mixture disturb calcium homeostasis in dopaminergic PC12 cells.**
Heusinkveld HJ, Westerink RH.
PMID: 22191981 [PubMed - indexed for MEDLINE]
Related citations

137. **Animal models of Parkinson's disease.**
Jackson-Lewis V, Blesa J, Przedborski S.
PMID: 22166429 [PubMed - indexed for MEDLINE]
Related citations

138. **Oxicam structure in non-steroidal anti-inflammatory drugs is essential to exhibit Akt-mediated neuroprotection against 1-methyl-4-phenyl pyridinium-induced cytotoxicity.**
PMID: 22182582 [PubMed - indexed for MEDLINE]
139. **Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3.**

140. **A national registry to determine the distribution and prevalence of Parkinson's disease in Thailand: implications of urbanization and pesticides as risk factors for Parkinson's disease.**

PMID: 22133707 [PubMed - indexed for MEDLINE]

141. **Role of epigenetics in Alzheimer's and Parkinson's disease.**

PMID: 22122050 [PubMed - indexed for MEDLINE]

142. **Differential regional expression patterns of α-synuclein, TNF-α, and IL-1β; and variable status of dopaminergic neurotoxicity in mouse brain after Paraquat treatment.**

143. **Neurotoxin-based models of Parkinson's disease.**

PMID: 22108613 [PubMed - indexed for MEDLINE]

144. **Subchronic polychlorinated biphenyl (Aroclor 1254) exposure produces oxidative damage and neuronal death of ventral midbrain dopaminergic systems.**

Related citations

145. *Rotenone activates phagocyte NADPH oxidase by binding to its membrane subunit gp91phox.*

Related citations

Tomenson JA, Campbell C.

Related citations

147. *Bee venom protects SH-SY5Y human neuroblastoma cells from 1-methyl-4-phenylpyridinium-induced apoptotic cell death.*
Doo AR, Kim SN, Kim ST, Park JY, Chung SH, Choe BY, Chae Y, Lee H, Yin CS, Park HJ.
PMID: 22078207 [PubMed - indexed for MEDLINE]

Related citations

148. *Brassinosteroids and analogs as neuroprotectors: synthesis and structure-activity relationships.*
Ismaili J, Boisvert M, Longpré F, Carange J, Le Gall C, Martinoli MG, Daoust B.
PMID: 22064216 [PubMed - indexed for MEDLINE]

Related citations

149. *Potential autophagy enhancers attenuate rotenone-induced toxicity in SH-SY5Y.*
PMID: 22056603 [PubMed - indexed for MEDLINE]

Related citations

150. *A new role for laminins as modulators of protein toxicity in Caenorhabditis elegans.*
Jensen LT, Møller TH, Larsen SA, Jakobsen H, Olsen A.
Related citations

151. **Prevention of paraquat-induced apoptosis in human neuronal SH-SY5Y cells by lipocalin-type prostaglandin D synthase.**
Fujimori K, Fukuhara A, Inui T, Allhorn M.
PMID: 22043816 [PubMed - indexed for MEDLINE]

Related citations

152. **Early exposure to paraquat sensitizes dopaminergic neurons to subsequent silencing of PINK1 gene expression in mice.**
Zhou H, Huang C, Tong J, Xia XG.

Related citations

153. **Protection against dopaminergic neurodegeneration in Parkinson's disease-model animals by a modulator of the oxidized form of DJ-1, a wild-type of familial Parkinson's disease-linked PARK7.**

Related citations

154. **Paraquat and Parkinson's disease: an overview of the epidemiology and a review of two recent studies.**
Mandel JS, Adami HO, Cole P.
PMID: 22024235 [PubMed - indexed for MEDLINE]

Related citations

155. **Deprenyl prevents MPP(+) -induced oxidative damage in PC12 cells by the upregulation of Nrf2-mediated NQO1 expression through the activation of PI3K/Akt and Erk.**
Xiao H, Lv F, Xu W, Zhang L, Jing P, Cao X.
PMID: 22019741 [PubMed - indexed for MEDLINE]

Related citations

156. **Identification of bilateral changes in TID1 expression in the 6-OHDA rat model of Parkinson's disease.**
Proft J, Faraji J, Robbins JC, Zucchi FC, Zhao X, Metz GA, Braun JE.
157. **Leads from xenobiotic metabolism genes for Parkinson's disease among north Indians.**
Punia S, Das M, Behari M, Dihana M, Govindappa ST, Muthane UB, Thelma BK, Juyal RC.
PMID: 22016051 [PubMed indexed for MEDLINE]

158. **Intranasal administration of neurotoxicants in animals: support for the olfactory vector hypothesis of Parkinson's disease.**
PMID: 22002807 [PubMed indexed for MEDLINE]

159. **Protective effects of baicalein against rotenone-induced neurotoxicity in PC12 cells and isolated rat brain mitochondria.**
Li XX, He GR, Mu X, Xu B, Tian S, Yu X, Meng FR, Xuan ZH, Du GH.
PMID: 21996316 [PubMed indexed for MEDLINE]

160. **Generation of reactive oxygen species in 1-methyl-4-phenylpyridinium (MPP+) treated dopaminergic neurons occurs as an NADPH oxidase-dependent two-wave cascade.**
Zawada WM, Banninger GP, Thornton J, Marriott B, Cantu D, Rachubinski AL, Das M, Griffin WS, Jones SM.
PMID: 21975039 [PubMed indexed for MEDLINE] Free PMC Article

161. **Standardized extracts of Bacopa monniera protect against MPP+- and paraquat-induced toxicity by modulating mitochondrial activities, proteasomal functions, and redox pathways.**
Singh M, Murthy V, Ramassamy C.

162. **Developmental exposure to organophosphates triggers transcriptional changes in genes associated with Parkinson's disease in vitro and in vivo.**
Slotkin TA, Seidler FJ.
Chronic dichlorvos exposure: microglial activation, proinflammatory cytokines and damage to nigrostriatal dopaminergic system.
Binukumar BK, Bal A, Gill KD.
PMID: 21964614 [PubMed - indexed for MEDLINE]

Protective effect of Bu-7, a flavonoid extracted from Clausena lansium, against rotenone injury in PC12 cells.
Li BY, Yuan YH, Hu JF, Zhao Q, Zhang DM, Chen NH.
PMID: 21963892 [PubMed - indexed for MEDLINE]

The neuroprotective enzyme CYP2D6 increases in the brain with age and is lower in Parkinson's disease patients.
Mann A, Miksys SL, Gaedigk A, Kish SJ, Mash DC, Tyndale RF.
PMID: 21958961 [PubMed - indexed for MEDLINE]

Acetyl-L-carnitine and α-lipoic acid affect rotenone-induced damage in nigral dopaminergic neurons of rat brain, implication for Parkinson's disease therapy.
Zaitone SA, Abo-Elmatty DM, Shaalan AA.
PMID: 21958946 [PubMed - indexed for MEDLINE]

Behavioral, neurochemical and histological alterations promoted by bilateral intranigral rotenone administration: a new approach for an old neurotoxin.
PMID: 21953489 [PubMed - indexed for MEDLINE]
Related citations

168. Rotenone-mediated changes in intracellular coenzyme A thioester levels: implications for mitochondrial dysfunction.
Basu SS, Blair IA.
Related citations

169. Exposure to glyphosate- and/or Mn/Zn-ethylene-bis-dithiocarbamate-containing pesticides leads to degeneration of γ-aminobutyric acid and dopamine neurons in Caenorhabditis elegans.
Negga R, Stuart JA, Machen ML, Salva J, Lizek AJ, Richardson SJ, Osborne AS, Mirallas O, McVey KA, Fitsanakis VA.
Related citations

170. Gender segregation in gene expression and vulnerability to oxidative stress induced injury in ventral mesencephalic cultures of dopamine neurons.
Tao Q, Fan X, Li T, Tang Y, Yang D, Le W.
Related citations

171. Residential pesticide usage in older adults residing in Central California.
Armes MN, Liew Z, Wang A, Wu X, Bennett DH, Hertz-Picciotto I, Ritz B.
Related citations

172. DJ-1 knock-down impairs astrocyte mitochondrial function.
Larsen NJ, Ambrosi G, Mullett SJ, Berman SB, Hinkle DA.
Related citations

173. Differential effects of activating D1 and D2 receptors on electrophysiology of neostriatal neurons in a rat model of Parkinson's disease induced by paraquat and maneb.
Xu H, Chen R, Cai X, He D.
174. **Leaf extract of Rhus verniciflua Stokes protects dopaminergic neuronal cells in a rotenone model of Parkinson's disease.**
Kim S, Park SE, Sapkota K, Kim MK, Kim SJ.
PMID: 21899552 [PubMed - indexed for MEDLINE]

175. **Engrailed protects mouse midbrain dopaminergic neurons against mitochondrial complex I insults.**
PMID: 21892157 [PubMed - indexed for MEDLINE]

176. **Intervention of mitochondrial dysfunction-oxidative stress-dependent apoptosis as a possible neuroprotective mechanism of α-lipoic acid against rotenone-induced parkinsonism and L-dopa toxicity.**
Abdin AA, Sarhan NI.
PMID: 21889550 [PubMed - indexed for MEDLINE]

177. **Dopamine oxidation facilitates rotenone-dependent potentiation of N-methyl-D-aspartate currents in rat substantia nigra dopamine neurons.**
Wu YN, Johnson SW.
PMID: 21884756 [PubMed - indexed for MEDLINE]

178. **Melatonin protects against rotenone-induced cell injury via inhibition of Omi and Bax-mediated autophagy in Hela cells.**
Zhou H, Chen J, Lu X, Shen C, Zeng J, Chen L, Pei Z.
PMID: 21883444 [PubMed - indexed for MEDLINE]

179. **Role of paraoxonase 1 (PON1) in organophosphate metabolism: implications in**
neurodegenerative diseases.
Androutsopoulos VP, Kanavouras K, Tsatsakis AM.
PMID: 21864557 [PubMed - indexed for MEDLINE]
Related citations

180. Newly developed Mg2+-selective fluorescent probe enables visualization of Mg2+ dynamics in mitochondria.
Related citations

181. Overexpression of TFAM, NRF-1 and myr-AKT protects the MPP(+) induced mitochondrial dysfunctions in neuronal cells.
Piao Y, Kim HG, Oh MS, Pak YK.
Epub 2011 Aug 11.
PMID: 21856379 [PubMed - indexed for MEDLINE]
Related citations

182. Protection of dichlorvos induced oxidative stress and nigrostriatal neuronal death by chronic coenzyme Q10 pretreatment.
Binukumar BK, Gupta N, Bal A, Gill KD.
PMID: 21843543 [PubMed - indexed for MEDLINE]
Related citations

183. Alterations in glutathione S-transferase pi expression following exposure to MPP+-induced oxidative stress in the blood of Parkinson's disease patients.
Korff A, Pfeiffer B, Smeyne M, Kocak M, Pfeiffer RF, Smeyne RJ.
Epub 2011 Aug 12.
Related citations

184. The effects of paraquat on regional brain neurotransmitter activity, hippocampal BDNF and behavioural function in female mice.
Litteljohn D, Nelson E, Bethune C, Hayley S.
PMID: 21835224 [PubMed - indexed for MEDLINE]
185. **Similar potency of catechin and its enantiomers in alleviating 1-methyl-4-phenylpyridinium ion cytotoxicity in SH-SY5Y cells.**
Ruan HL, Yang Y, Zhu XN, Wang XL, Chen RZ.
PMID: 21827489 [PubMed - indexed for MEDLINE]

186. **JNK3-mediated apoptotic cell death in primary dopaminergic neurons.**
Choi WS, Klintworth HM, Xia Z.

187. **An effective novel delivery strategy of rasagiline for Parkinson's disease.**
Fernández M, Negro S, Slowing K, Fernández-Carballido A, Barcia E.
PMID: 21807080 [PubMed - indexed for MEDLINE]

188. **Protective effects of agmatine in rotenone-induced damage of human SH-SY5Y neuroblastoma cells: fourier transform infrared spectroscopy analysis in a model of Parkinson's disease.**
PMID: 21805293 [PubMed - indexed for MEDLINE]

189. **Environmental neurotoxic pesticide dieldrin activates a non receptor tyrosine kinase to promote PKCδ-mediated dopaminergic apoptosis in a dopaminergic neuronal cell model.**
Saminathan H, Asaithambi A, Anantharam V, Kanthasamy AG, Kanthasamy A.

190. **14-3-3theta protects against neurotoxicity in a cellular Parkinson's disease model through inhibition of the apoptotic factor Bax.**
Slone SR, Lesort M, Yacoubian TA.
Related citations

191. **Acute toxicity of MPTP and MPP(+) in the brain of embryo and newborn mice.**
 Sai T, Uchida K, Nakayama H.
 PMID: 21798732 [PubMed - indexed for MEDLINE]

Related citations

192. **Neonatal exposure to lipopolysaccharide enhances vulnerability of nigrostriatal dopaminergic neurons to rotenone neurotoxicity in later life.**
 Fan LW, Tien LT, Lin RC, Simpson KL, Rhodes PG, Cai Z.

Related citations

193. **Epidemiologic studies of glyphosate and non-cancer health outcomes: a review.**
 Mink PJ, Mandel JS, Lundin JJ, Sceurman BK.
 PMID: 21798302 [PubMed - indexed for MEDLINE]

Related citations

194. **Resistance of the golden hamster to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-neurotoxicity is not only related with low levels of cerebral monoamine oxidase-B.**
 Rodríguez S, Ito T, He XJ, Uchida K, Nakayama H.
 PMID: 21795029 [PubMed - indexed for MEDLINE]

Related citations

195. **PI3-K/Akt and ERK pathways activated by VEGF play opposite roles in MPP+-induced neuronal apoptosis.**
 Cui W, Li W, Han R, Mak S, Zhang H, Hu S, Rong J, Han Y.
 PMID: 21781996 [PubMed - indexed for MEDLINE]

Related citations

196. **Genetic polymorphisms involved in dopaminergic neurotransmission and risk for Parkinson's disease in a Japanese population.**

33
Related citations

 PMID: 21778691 [PubMed - indexed for MEDLINE]
Related citations

198. Paraquat induces epigenetic changes by promoting histone acetylation in cell culture models of dopaminergic degeneration.
 Song C, Kanthasamy A, Jin H, Anantharam V, Kanthasamy AG.
Related citations

199. Mitochondrial dysfunction precedes other sub-cellular abnormalities in an in vitro model linked with cell death in Parkinson's disease.
 Yong-Kee CJ, Sidorova E, Hanif A, Perera G, Nash JE.
 PMID: 21773851 [PubMed - indexed for MEDLINE]
Related citations

200. Endogenous hydrogen sulfide is involved in asymmetric dimethylarginine-induced protection against neurotoxicity of 1-methyl-4-phenylpyridinium ion.
 Tang XQ, Fang HR, Li YJ, Zhou CF, Ren YK, Chen RQ, Wang CY, Hu B.
 PMID: 21748658 [PubMed - indexed for MEDLINE]
Related citations

201. Neuroprotective cytokines repress PUMA induction in the 1-methyl-4-phenylpyridinium (MPP(+)) model of Parkinson's disease.
 Kook YH, Ka M, Um M.
 PMID: 21741364 [PubMed - indexed for MEDLINE]
Related citations

PMID: 21736921 [PubMed - indexed for MEDLINE]
Related citations

203. Dopamine and paraquat enhance α-synuclein-induced alterations in membrane conductance. Feng LR, Maguire-Zeiss KA.
Related citations

204. [Biological consequences of oxidative stress induced by pesticides]. Grosicka-Maciąg E.
Related citations

Feldman AL, Johansson AL, Nise G, Gatz M, Pedersen NL, Wirdefeldt K.
Related citations

206. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, protects dopaminergic neurons from neurotoxin-induced damage.
Related citations

207. Calpain inhibition protected spinal cord motoneurons against 1-methyl-4-phenylpyridinium ion and rotenone.
Samantaray S, Knaryan VH, Le Gal C, Ray SK, Banik NL.
Related citations

208. Neuroprotective effects of vanillyl alcohol in Gastrodia elata Blume through suppression of oxidative stress and anti-apoptotic activity in toxin-induced dopaminergic MN9D cells.
Kim IS, Choi DK, Jung HJ.
209. Parkinson's disease among gardeners exposed to pesticides--a Danish cohort study.
Kenborg L, Lassen CF, Lander F, Olsen JH.
PMID: 21687921 [PubMed-indexed for MEDLINE] Related citations

210. Edaravone guards dopamine neurons in a rotenone model for Parkinson's disease.

211. Vascular damage mediates neuronal and non-neuronal pathology following short and long-term rotenone administration in Sprague-Dawley rats.
Radad K, Hassanein K, Moldzio R, Rausch WD.
PMID: 21676605 [PubMed-indexed for MEDLINE] Related citations

212. MPP(+)-induced toxicity in the presence of dopamine is mediated by COX-2 through oxidative stress.
Hsieh YC, Mounsey RB, Teismann P.

213. Neuroprotection of α-synuclein under acute and chronic rotenone and maneb treatment is abolished by its familial Parkinson's disease mutations A30P, A53T and E46K.
Choong CJ, Say YH.
PMID: 21658409 [PubMed-indexed for MEDLINE] Related citations

214. Paraquat- and rotenone-induced models of Parkinson's disease.
Nisticò R, Mehdawy B, Piccirilli S, Mercuri N.
215. Traumatic brain injury in adult rats causes progressive nigrostriatal dopaminergic cell loss and enhanced vulnerability to the pesticide paraquat.
Hutson CB, Lazo CR, Mortazavi F, Giza CC, Hovda D, Chesselet MF.
Related citations

216. Epidemiology and etiology of Parkinson's disease: a review of the evidence.
Wirdefeldt K, Adami HO, Cole P, Trichopoulos D, Mandel J.
PMID: 21626386 [PubMed - indexed for MEDLINE]
Related citations

217. Rotenone and paraquat linked to Parkinson's disease: human exposure study supports years of animal studies.
Spivey A.
Related citations

218. In search of the causes of Parkinson's disease, seasons 1 to 4.
Elbaz A.
PMID: 21626392 [PubMed - indexed for MEDLINE]
Related citations

Related citations

220. β-Hexachlorocyclohexane levels in serum and risk of Parkinson's disease.
Richardson JR, Roy A, Shalat SL, Buckley B, Winnik B, Gearing M, Levey AI, Factor SA, O'Suilleabain P, German DC.
Related citations

221. **Effects of co-exposure to paraquat and maneb on system of substantial nigra and striatum in rats.**
Xu HY, Chen RR, Cai XY, He DF.
PMID: 21619794 [PubMed - indexed for MEDLINE]
Related citations

222. **DLPL1-dependent mitochondrial fragmentation mediates 1-methyl-4-phenylpyridinium toxicity in neurons: implications for Parkinson's disease.**
Related citations

223. **Parkinsonism complicating acute organophosphate insecticide poisoning.**
Hashim HZ, Wan Musa WR, Ngiu CS, Wan Yahya WN, Tan HJ, Ibrahim N.
PMID: 21603737 [PubMed - indexed for MEDLINE] Free Article
Related citations

224. **Association between environmental exposure to pesticides and neurodegenerative diseases.**
Parrón T, Requena M, Hernández AF, Alarcón R.
PMID: 21601587 [PubMed - indexed for MEDLINE]
Related citations

225. **Effects of pioglitazone and retinoic acid in a rotenone model of Parkinson's disease.**
Ulusoy GK, Celik T, Kayir H, Gürsoy M, Isik AT, Uzbay TI.
PMID: 21600965 [PubMed - indexed for MEDLINE]
Related citations

226. **Sex- and brain region-specific role of cytochrome c oxidase in 1-methyl-4-phenylpyridinium-mediated astrocyte vulnerability.**
Sundar Boyalla S, Barbara Victor M, Roemgens A, Beyer C, Arnold S.
PMID: 21598289 [PubMed - indexed for MEDLINE]
Related citations
227. **Effect of mitochondrial complex I inhibition on Fe-S cluster protein activity.**
Mena NP, Bulteau AL, Salazar J, Hirsch EC, Núñez MT.
PMID: 21570952 [PubMed - indexed for MEDLINE]
Related citations

228. **Effect of malate on the development of rotenone-induced brain changes in Wistar and OXYS rats: An MRI study.**
Kolosova NG, Akulov AE, Stefanova NA, Moshkin MP, Savelov AA, Koptyug IV, Panov AV, Vavilin VA.
PMID: 21562948 [PubMed - indexed for MEDLINE]
Related citations

229. **The parkinsonian mimetic, MPP+, specifically impairs mitochondrial transport in dopamine axons.**
Kim-Han JS, Antenor-Dorsey JA, O'Malley KL.
Related citations

230. **Mitochondrial uncoupling agents antagonize rotenone actions in rat substantia nigra dopamine neurons.**
Wu YN, Munhall AC, Johnson SW.
PMID: 21550595 [PubMed - indexed for MEDLINE]
Related citations

231. **Myricetin attenuated MPP(+)-induced cytotoxicity by anti-oxidation and inhibition of MKK4 and JNK activation in MES23.5 cells.**
Zhang K, Ma Z, Wang J, Xie A, Xie J.
PMID: 21549720 [PubMed - indexed for MEDLINE]
Related citations

232. **Assessment of fetal brain uptake of paraquat in utero using in vivo PET/CT imaging.**
Bartlett RM, Murali D, Nickles RJ, Barnhart TE, Holden JE, DeJesus OT.
Related citations
233. **ASICs mediate the modulatory effect by paeoniflorin on α-synuclein autophagic degradation.**
Sun X, Cao YB, Hu LF, Yang YP, Li J, Wang F, Liu CF.
PMID: 21529788 [PubMed - indexed for MEDLINE]
Related citations

234. **Mitochondrial permeability transition pore component cyclophilin D distinguishes nigrostriatal dopaminergic death paradigms in the MPTP mouse model of Parkinson’s disease.**
Thomas B, Banerjee R, Starkova NN, Zhang SF, Calingasan NY, Yang L, Wille E, Lorenzo BJ, Ho DJ, Beal MF, Starkov A.
PMID: 21529244 [PubMed - indexed for MEDLINE] Free PMC Article
Related citations

235. **NewsCAP: Two pesticides raise the risk of Parkinson's disease.**
[No authors listed]
PMID: 23722368 [PubMed - in process]
Related citations

236. **Di-3-n-butylphthalide, a natural antioxidant, protects dopamine neurons in rotenone models for Parkinson's disease.**
PMID: 21524431 [PubMed - indexed for MEDLINE]
Related citations

237. **The role of calcium channel blockers and resveratrol in the prevention of paraquat-induced parkinsonism in Drosophila melanogaster: a locomotor analysis.**
PMID: 21523449 [PubMed - indexed for MEDLINE]
Related citations

238. **Parkinson's disease risk from ambient exposure to pesticides.**
Related citations

239. Tetrahydroxystilbene glucoside protects human neuroblastoma SH-SY5Y cells against MPP+-induced cytotoxicity.

240. [5-lipoxygenase is involved in rotenone-induced injury in PC12 cells].

241. Animal models of Parkinson's disease: a source of novel treatments and clues to the cause of the disease.

242. Protective effect of lycopene on oxidative stress and cognitive decline in rotenone induced model of Parkinson's disease.

243. Interferon-γ plays a role in paraquat-induced neurodegeneration involving oxidative and proinflammatory pathways.

244. Alternative mitochondrial electron transfer as a novel strategy for neuroprotection.
Knowing me, knowing you: can a knowledge of risk factors for Alzheimer's disease prove useful in understanding the pathogenesis of Parkinson's disease?
Sutherland GT, Siebert GA, Kril JJ, Mellick GD.
PMID: 21441655 [PubMed-indexed for MEDLINE]
Related citations

Interaction between heme oxygenase-1 genotypes and exposure to pesticides in Parkinson's disease.
PMID: 21425334 [PubMed-indexed for MEDLINE]
Related citations

PARK6 PINK1 mutants are defective in maintaining mitochondrial membrane potential and inhibiting ROS formation of substantia nigra dopaminergic neurons.
Wang HL, Chou AH, Wu AS, Chen SY, Weng YH, Kao YC, Yeh TH, Chu PJ, Lu CS.
PMID: 21421046 [PubMed-indexed for MEDLINE]
Related citations

Dose-dependent loss of motor function after unilateral medial forebrain bundle rotenone lesion in rats: a cautionary note.
Klein A, Gidyk DC, Shriner AM, Colwell KL, Tatton NA, Tatton WG, Metz GA.
PMID: 21419806 [PubMed-indexed for MEDLINE]
Related citations

Neoechinulin a impedes the progression of rotenone-induced cytotoxicity in PC12 cells.
250. The relation between type of farming and prevalence of Parkinson's disease among agricultural workers in five French districts.
PMID: 21412834 [PubMed - indexed for MEDLINE]

Hinault MP, Farina-Henriquez-Cuendet A, Goloubinoff P.
Review.
PMID: 21411979 [PubMed - indexed for MEDLINE]

252. Maneb and paraquat-mediated neurotoxicity: involvement of peroxiredoxin/thioredoxin system.
Roede JR, Hansen JM, Go YM, Jones DP.

253. Biochemical and toxicological evidence of neurological effects of pesticides: the example of Parkinson's disease.
Moretto A, Colosio C.
PMID: 21402100 [PubMed - indexed for MEDLINE]

254. Loss of mitochondrial complex I activity potentiates dopamine neuron death induced by microtubule dysfunction in a Parkinson's disease model.
Choi WS, Palmiter RD, Xia Z.

255. Granulocyte macrophage-colony stimulating factor protects against substantia nigra dopaminergic cell loss in an environmental toxin model of Parkinson's disease.
PMID: 21377529 [PubMed - indexed for MEDLINE]
Related citations

256. Exposures to Mn/Zn ethylene-bis-dithiocarbamate and glyphosphate pesticides leads to neurodegeneration in Caenorhabditis elegans.
Negga R, Rudd DA, Davis NS, Justice AN, Hatfield HE, Valente AL, Fields AS, Fitsanakis VA.
Related citations

257. Genetic-based, differential susceptibility to paraquat neurotoxicity in mice.
Yin L, Lu L, Prasad K, Richfield EK, Unger EL, Xu J, Jones BC.
PMID: 21371552 [PubMed - indexed for MEDLINE]
Related citations

258. Impairment of oxidative stress-induced heme oxygenase-1 expression by the defect of Parkinson-related gene of PINK1.
Chien WL, Lee TR, Hung SY, Kang KH, Lee MJ, Fu WM.
PMID: 21366594 [PubMed - indexed for MEDLINE]
Related citations

259. The expression of nicotinamide N-methyltransferase increases ATP synthesis and protects SH-SY5Y neuroblastoma cells against the toxicity of Complex I inhibitors.
Parsons RB, Aravindan S, Kadampeswaran A, Evans EA, Sandhu KK, Levy ER, Thomas MG, Austen BM, Ramsden DB.
Related citations

260. Protection against 1-methyl-4-phenylpyridinium ion (MPP+)-induced apoptosis by water extract of ginseng (Panax ginseng C.A. Meyer) in SH-SY5Y cells.
Hu S, Han R, Mak S, Han Y.
PMID: 21349320 [PubMed - indexed for MEDLINE]
Related citations

261. Role of familial, environmental and occupational factors in the development of Parkinson's disease.
Das K, Ghosh M, Nag C, Nandy SP, Banerjee M, Datta M, Devi G, Chaterjee G.
Related citations

262. **(-)-Schisandrin B ameliorates paraquat-induced oxidative stress by suppressing glutathione depletion and enhancing glutathione recovery in differentiated PC12 cells.**

Lam PY, Ko KM.

PMID: 21328628 [PubMed - indexed for MEDLINE]

Related citations

263. **Dopamine D₁ and D₂ receptor subtypes functional regulation in cerebral cortex of unilateral rotenone lesioned Parkinson's rat model: Effect of serotonin, dopamine and norepinephrine.**

Paul J, Kuruvilla KP, Mathew J, Kumar P, Paulose CS.

PMID: 21306935 [PubMed - indexed for MEDLINE]

Related citations

264. **DJ-1 mediates paraquat-induced dopaminergic neuronal cell death.**

PMID: 21300143 [PubMed - indexed for MEDLINE]

Related citations

265. **Impaired CD200-CD200R-mediated microglia silencing enhances midbrain dopaminergic neurodegeneration: roles of aging, superoxide, NADPH oxidase, and p38 MAPK.**

PMID: 21295135 [PubMed - indexed for MEDLINE]

Related citations

266. **FLZ, a novel HSP27 and HSP70 inducer, protects SH-SY5Y cells from apoptosis caused by MPP(+).**

Kong XC, Zhang D, Qian C, Liu GT, Bao XQ.

PMID: 21295016 [PubMed - indexed for MEDLINE]

Related citations

267. **Fluoxetine prevents MPTP-induced loss of dopaminergic neurons by inhibiting microglial activation.**

Chung YC, Kim SR, Park JY, Chung ES, Park KW, Won SY, Bok E, Jin M, Park ES, Yoon...
Related citations

Related citations

269. Rotenone, paraquat, and Parkinson's disease.
Related citations

270. Salidroside protects against MPP(+)−induced apoptosis in PC12 cells by inhibiting the NO pathway.
Related citations

271. Pesticide exposure and risk of Parkinson's disease--a population-based case-control study evaluating the potential for recall bias.
Related citations

272. Over-expression of α-synuclein 98 triggers intracellular oxidative stress and enhances susceptibility to rotenone.
Related citations

273. Protection by tetrahydroxystilbene glucoside against neurotoxicity induced by MPP+: the involvement of PI3K/Akt pathway activation.
Qin R, Li X, Li G, Tao L, Li Y, Sun J, Kang X, Chen J.
PMID: 21237255 [PubMed - indexed for MEDLINE]

Related citations

274. HDAC6 regulates aggresome-autophagy degradation pathway of α-synuclein in response to MPP+-induced stress.
Su M, Shi JJ, Yang YP, Li J, Zhang YL, Chen J, Hu LF, Liu CF.
PMID: 21235576 [PubMed - indexed for MEDLINE]

Related citations

275. Toxin-induced and genetic animal models of Parkinson's disease.
Hisahara S, Shimohama S.
PMID: 21234368 [PubMed] Free PMC Article

Related citations

276. Inflammatory mechanisms of neurodegeneration in toxin-based models of Parkinson's disease.
Litteljohn D, Mangano E, Clarke M, Bobyn J, Moloney K, Hayley S.

Related citations

277. Protective effect of Chrysanthemum indicum Linne against 1-methyl-4-phenylpyridinium ion and lipopolysaccharide-induced cytotoxicity in cellular model of Parkinson's disease.
Kim IS, Ko HM, Koppula S, Kim BW, Choi DK.
PMID: 21219959 [PubMed - indexed for MEDLINE]

Related citations

278. DJ-1 deficiency in astrocytes selectively enhances mitochondrial Complex I inhibitor-induced neurotoxicity.
Mullett SJ, Hinkle DA.
Related citations

279. [Regulation of dopaminergic neuronal death by endogenous dopamine and proteasome activity].
Izumi Y, Kume T, Akaike A.

Related citations

280. Parkinsonian rotenone mouse model: reevaluation of long-term administration of rotenone in C57BL/6 mice.
Inden M, Kitamura Y, Abe M, Tamaki A, Takata K, Taniguchi T.

Related citations

281. S-Allylcysteine, a garlic compound, protects against oxidative stress in 1-methyl-4-phenylpyridinium-induced parkinsonism in mice.
Rojas P, Serrano-García N, Medina-Campos ON, Pedraza-Chaverri J, Maldonado PD, Ruiz-Sánchez E.
PMID: 21190833 [PubMed - indexed for MEDLINE]

Related citations

282. The neuroprotective effect of modified Yeoldahanso-tang via autophagy enhancement in models of Parkinson's disease.
Bae N, Ahn T, Chung S, Oh MS, Ko H, Oh H, Park G, Yang HO.
PMID: 21172413 [PubMed - indexed for MEDLINE]

Related citations

283. Lrrk2 S1647T and BDNF V66M interact with environmental factors to increase risk of Parkinson's disease.
Lin CH, Wu RM, Tai CH, Chen ML, Hu FC.
PMID: 21167764 [PubMed - indexed for MEDLINE]

Related citations

284. Differential neuroprotective effects of 14-3-3 proteins in models of Parkinson's disease.
Yacoubian TA, Slone SR, Harrington AJ, Hamamichi S, Schieltz JM, Caldwell KA, Caldwell GA, Standaert DG.
285. **Liquid chromatographic-electrospray mass spectrometric determination of 1-methyl-4-phenylpyridine (MPP+) in discrete regions of murine brain.**
Related citations

286. **Oral administration of rotenone using a gavage and image analysis of alpha-synuclein inclusions in the enteric nervous system.**
Pan-Montojo FJ, Funk RH.
Related citations

287. **Paullinia cupana Mart. var. Sorbilis protects human dopaminergic neuroblastoma SH-SY5Y cell line against rotenone-induced cytotoxicity.**
de Oliveira DM, Barreto G, Galeano P, Romero JI, Holubiec MI, Badorrey MS, Capani F, Alvarez LD.
PMID: 21081703 [PubMed - indexed for MEDLINE]
Related citations

288. **Nigrostriatal neuronal death following chronic dichlorvos exposure: crosstalk between mitochondrial impairments, α synuclein aggregation, oxidative damage and behavioral changes.**
Binukumar BK, Bal A, Kandimalla RJ, Gill KD.
Related citations

289. **Detoxified extract of Rhus verniciflua stokes inhibits rotenone-induced apoptosis in human dopaminergic cells, SH-SY5Y.**
Sapkota K, Kim S, Park SE, Kim SJ.
PMID: 21061154 [PubMed - indexed for MEDLINE]
Related citations

290. **Environmental and familial risk factors of Parkinsons disease: case-control study.**
291. Proteomic insights into the protective mechanisms of an in vitro oxidative stress model of early stage Parkinson's disease.
Bauereis B, Haskins WE, Lebaron RG, Renthal R.

292. Astaxanthin protects against MPTP/MPP+-induced mitochondrial dysfunction and ROS production in vivo and in vitro.
Lee DH, Kim CS, Lee YJ.

293. Synergistic effects of environmental risk factors and gene mutations in Parkinson's disease accelerate age-related neurodegeneration.
Peng J, Oo ML, Andersen JK.

294. Glutamoyl diester of the dietary polyphenol curcumin offers improved protection against peroxynitrite-mediated nitrosative stress and damage of brain mitochondria in vitro: implications for Parkinson's disease.
Mythri RB, Harish G, Dubey SK, Misra K, Bharath MM.
PMID: 20972609 [PubMed - indexed for MEDLINE] Related citations

295. DJ-1 cleavage by matrix metalloproteinase 3 mediates oxidative stress-induced dopaminergic cell death.
Choi DH, Hwang O, Lee KH, Lee J, Beal MF, Kim YS.
PMID: 20969476 [PubMed - indexed for MEDLINE] Related citations

296. Rosmarinic acid antagonized 1-methyl-4-phenylpyridinium (MPP+) -induced neurotoxicity
in MES23.5 dopaminergic cells.
Du T, Li L, Song N, Xie J, Jiang H.
PMID: 20966113 [PubMed - indexed for MEDLINE]
Related citations

297. Melatonin or silymarin reduces maneb- and paraquat-induced Parkinson's disease phenotype in the mouse.
Singhal NK, Srivastava G, Patel DK, Jain SK, Singh MP.
PMID: 20964710 [PubMed - indexed for MEDLINE]
Related citations

298. Insulin-like growth factor 1 protects human neuroblastoma cells SH-EP1 against MPP+-induced apoptosis by AKT/GSK-3β/JNK signaling.
Wang L, Yang HJ, Xia YY, Feng ZW.
PMID: 20963499 [PubMed - indexed for MEDLINE]
Related citations

Wingo TS, Rosen A, Cutler DJ, Lah JJ, Levey AI.
Related citations

300. A novel synthetic compound PHID (8-Phenyl-6a, 7, 8, 9, 9a, 10-hexahydro-6H-isooindolo [5, 6-g] quinoxaline-7, 9-dione) protects SH-SY5Y cells against MPP(+) induced cytotoxicity through inhibition of reactive oxygen species generation and JNK signaling.
Kim IS, Koppula S, Kim BW, Song MD, Jung JY, Lee G, Lee HS, Choi DK.
PMID: 20946892 [PubMed - indexed for MEDLINE]
Related citations

301. DJ-1 acts in parallel to the PINK1/parkin pathway to control mitochondrial function and autophagy.
302. **Protective effect of effective part of Acanthopanacis senticosus on damage of PC12 cells induced by MPP+.**

303. **ASK1 overexpression accelerates paraquat-induced autophagy via endoplasmic reticulum stress.**

304. **PGC-1α, a potential therapeutic target for early intervention in Parkinson's disease.**

305. **Iron mediates neuritic tree collapse in mesencephalic neurons treated with 1-methyl-4-phenylpyridinium (MPP+).**

306. **Modeling neuroinflammatory pathogenesis of Parkinson's disease.**

307. **Neurotoxic in vivo models of Parkinson's disease recent advances.**

Related citations

308. **Dopamine D\textsubscript{1} and D\textsubscript{2} receptor subtypes functional regulation in corpus striatum of unilateral rotenone lesioned Parkinson's rat model: effect of serotonin, dopamine and norepinephrine.**
 Paul J, Nandhu MS, Kuruvilla KP, Paulose CS.
 PMID: 20887679 [PubMed - indexed for MEDLINE]

Related citations

309. **Protective effects of TRH and its analogues against various cytotoxic agents in retinoic acid (RA)-differentiated human neuroblastoma SH-SY5Y cells.**
 PMID: 20869113 [PubMed - indexed for MEDLINE]

Related citations

310. **Ethyl-eicosapentaenoate modulates changes in neurochemistry and brain lipids induced by parkinsonian neurotoxin 1-methyl-4-phenylpyridinium in mouse brain slices.**
 Meng Q, Luchtman DW, El Bahh B, Zidichouski JA, Yang J, Song C.
 PMID: 20868657 [PubMed - indexed for MEDLINE]

Related citations

311. **Extracellular dopamine potentiates mn-induced oxidative stress, lifespan reduction, and dopaminergic neurodegeneration in a BLI-3-dependent manner in Caenorhabditis elegans.**
 Benedetto A, Au C, Avila DS, Milatovic D, Aschner M.

Related citations

312. **Human dental pulp stem cells protect mouse dopaminergic neurons against MPP+ or rotenone.**
 PMID: 20854799 [PubMed - indexed for MEDLINE]

Related citations

313. **Paraquat induces cyclooxygenase-2 (COX-2) implicated toxicity in human neuroblastoma SH-SY5Y cells.**
 Yang W, Tiffany-Castiglioni E, Lee MY, Son IH.
314. **Integrating multiple aspects of mitochondrial dynamics in neurons: age-related differences and dynamic changes in a chronic rotenone model.**
Arnold B, Cassady SJ, VanLaar VS, Berman SB.
PMID: 20850532 [PubMed-indexed for MEDLINE] **Free PMC Article**

315. **Reversal of rotenone-induced dysfunction of astrocytic connexin43 by opening mitochondrial ATP-sensitive potassium channels.**
PMID: 20824494 [PubMed-indexed for MEDLINE]

316. **Protective effect of urocortin on 1-methyl-4-phenylpyridinium-induced dopaminergic neuronal death.**
Kim Y, Park MK, Chung S.
PMID: 20821057 [PubMed-indexed for MEDLINE]

317. **[Parkinson's disease: Role of genetic and environment factors. Involvement in everyday clinical practice].**
Defebvre L.
PMID: 20817232 [PubMed-indexed for MEDLINE]

318. **Progressive loss of dopaminergic neurons induced by unilateral rotenone infusion into the medial forebrain bundle.**
Norazit A, Meedeniya AC, Nguyen MN, Mackay-Sim A.
PMID: 20807515 [PubMed-indexed for MEDLINE]

319. **[Parkinson's disease: Is there a strong environmental contribution?].**
Elbaz A, Moisan F.
30. **DJ-1 as a modulator of autophagy: an hypothesis.**

31. **Development of a high-throughput screening assay for cytoprotective agents in rotenone-induced cell death.**
PMID: 20705047 [PubMed - indexed for MEDLINE]

32. **Smoking duration, intensity, and risk of Parkinson disease.**
PMID: 20697113 [PubMed - indexed for MEDLINE]

33. **Salvianolic acid B protects SH-SY5Y neuroblastoma cells from 1-methyl-4-phenylpyridinium-induced apoptosis.**

34. **The neuroprotective effect of talipexole from paraquat-induced cell death in dopaminergic neuronal cells.**
Gómez-Sánchez R, Bravo-San Pedro JM, Niso-Santano M, Soler G, Fuentes JM, González-Polo RA.
PMID: 20673835 [PubMed - indexed for MEDLINE]

35. **Differential effect of environmental risk factors on postural instability gait difficulties and tremor dominant Parkinson's disease.**
Skeie GO, Muller B, Haugervoll K, Larsen JP, Tysnes OB.
PMID: 20669310 [PubMed - indexed for MEDLINE]

Related citations

326. *α*-Synuclein gene may interact with environmental factors in increasing risk of Parkinson's disease.

Related citations

327. The MAP kinase Pmk1 and protein kinase A are required for rotenone resistance in the fission yeast, Schizosaccharomyces pombe.

Related citations

328. Protection of dopaminergic cells from MPP+ -mediated toxicity by histone deacetylase inhibition.

Related citations

329. Morin exerts neuroprotective actions in Parkinson disease models in vitro and in vivo.

Related citations

330. Tetrahydroxystilbene glucoside attenuates MPP+ -induced apoptosis in PC12 cells by inhibiting ROS generation and modulating JNK activation.
PMID: 20643188 [PubMed - indexed for MEDLINE]

Related citations

331. Neuroprotective effects of an herbal medicine, Yi-Gan San on MPP+/MPTP-induced cytotoxicity in vitro and in vivo.
Jul 13.
PMID: 20633628 [PubMed - indexed for MEDLINE]

Related citations

332. **The RGD-containing peptide fragment of osteopontin protects tyrosine hydroxylase positive cells against toxic insult in primary ventral mesencephalic cultures and in the rat substantia nigra.**
Iczkiewicz J, Broom L, Cooper JD, Wong AM, Rose S, Jenner P.
PMID: 20626561 [PubMed - indexed for MEDLINE]

Related citations

333. **Rasagiline protects against alpha-synuclein induced sensitivity to oxidative stress in dopaminergic cells.**
Chau KY, Cooper JM, Schapira AH.
PMID: 20624440 [PubMed - indexed for MEDLINE]

Related citations

334. **Fibroblast growth factor 9 upregulates heme oxygenase-1 and gamma-glutamylcysteine synthetase expression to protect neurons from 1-methyl-4-phenylpyridinium toxicity.**
Huang JY, Chuang JI.
PMID: 20615462 [PubMed - indexed for MEDLINE]

Related citations

335. **Gypenosides protects dopaminergic neurons in primary culture against MPP(+)‐induced oxidative injury.**
Wang P, Niu L, Guo XD, Gao L, Li WX, Jia D, Wang XL, Ma LT, Gao GD.
PMID: 20615455 [PubMed - indexed for MEDLINE]

Related citations

336. **The roles of the thioredoxin system and peroxiredoxins in 1-methyl-4-phenyl-pyridinium ion-induced cytotoxicity in rat pheochromocytoma cells.**
Chen VT, Huang CL, Lee YC, Liao WC, Huang NK.
PMID: 20600802 [PubMed - indexed for MEDLINE]

Related citations
PMID: 20594614 [PubMed - indexed for MEDLINE]
Related citations

338. The transcription factor orthodenticle homeobox 2 influences axonal projections and vulnerability of midbrain dopaminergic neurons.
Related citations

PMID: 20563739 [PubMed - indexed for MEDLINE]
Related citations

340. Interaction between ABCB1 and professional exposure to organochlorine insecticides in Parkinson disease.
Dutheil F, Beaune P, Tzourio C, Loriot MA, Elbaz A.
PMID: 20558393 [PubMed - indexed for MEDLINE]
Related citations

341. Paeoniflorin, a potent natural compound, protects PC12 cells from MPP+ and acidic damage via autophagic pathway.
PMID: 20558269 [PubMed - indexed for MEDLINE]
Related citations

342. Effect of zinc and paraquat co-exposure on neurodegeneration: Modulation of oxidative stress and expression of metallothioneins, toxicant responsive and transporter genes in rats.
Kumar A, Ahmad I, Shukla S, Singh BK, Patel DK, Pandey HP, Singh C.
PMID: 20553223 [PubMed - indexed for MEDLINE]
Related citations

343. Depressive-like behaviors alterations induced by intranigral MPTP, 6-OHDA, LPS and
rotenone models of Parkinson's disease are predominantly associated with serotonin and dopamine.

Related citations

344. R492X mutation in PTEN-induced putative kinase 1 induced cellular mitochondrial dysfunction and oxidative stress.

Related citations

345. Neuroprotection of deferoxamine on rotenone-induced injury via accumulation of HIF-1 alpha and induction of autophagy in SH-SY5Y cells.

Related citations

346. Long-term efficacy and safety of human umbilical cord mesenchymal stromal cells in rotenone-induced hemiparkinsonian rats.

Related citations

347. (−)-Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, reduces dichlorodiphenyl-trichloroethane (DDT)-induced cell death in dopaminergic SHSY-5Y cells.

Related citations

Franco R, Li S, Rodriguez-Rocha H, Burns M, Panayiotidis MI.
Liposomal-glutathione provides maintenance of intracellular glutathione and neuroprotection in mesencephalic neuronal cells.
Zeevalk GD, Bernard LP, Guilford FT.
PMID: 20535554 [PubMed - indexed for MEDLINE]

Prophylactic treatment with Bacopa monnieri leaf powder mitigates paraquat-induced oxidative perturbations and lethality in Drosophila melanogaster.
Hosamani R, Muralidhara.
Indian J Biochem Biophys. 2010 Apr;47(2):75-82.
PMID: 20521619 [PubMed - indexed for MEDLINE]

The protective role of D-glucose against 1-methyl-4-phenylpyridinium ion (MPP+)-induced mitochondrial dysfunction in C6 astroglial cells.
Badisa RB, Darling-Reed SF, Soliman KF.
PMID: 20508987 [PubMed - indexed for MEDLINE]

Extended lifespan of Drosophila parkin mutants through sequestration of redox-active metals and enhancement of anti-oxidative pathways.
Saini N, Oellhafen S, Hua H, Georgiev O, Schaffner W, Büeler H.
PMID: 20483372 [PubMed - indexed for MEDLINE]

GST polymorphisms, interaction with smoking and pesticide use, and risk for Parkinson's disease in a Japanese population.
PMID: 20472488 [PubMed - indexed for MEDLINE]
354. **The Drosophila vesicular monoamine transporter reduces pesticide-induced loss of dopaminergic neurons.**
Lawal HO, Chang HY, Terrell AN, Brooks ES, Pulido D, Simon AF, Krantz DE.
Related citations

355. **Protective effects of Gastrodia elata Blume on MPP+-induced cytotoxicity in human dopaminergic SH-SY5Y cells.**
An H, Kim IS, Koppula S, Kim BW, Park PJ, Lim BO, Choi WS, Lee KH, Choi DK.
PMID: 20470875 [PubMed - indexed for MEDLINE]
Related citations

356. **α-Synuclein transgenic mice reveal compensatory increases in Parkinson's disease-associated proteins DJ-1 and parkin and have enhanced α-synuclein and PINK1 levels after rotenone treatment.**
George S, Mok SS, Nurjono M, Ayton S, Finkelstein DI, Masters CL, Li QX, Culvenor JG.
PMID: 20464527 [PubMed - indexed for MEDLINE]
Related citations

357. **Involvement of nitric oxide in maneb- and paraquat-induced Parkinson's disease phenotype in mouse: is there any link with lipid peroxidation?**
Gupta SP, Patel S, Yadav S, Singh AK, Singh S, Singh MP.
PMID: 20455021 [PubMed - indexed for MEDLINE]
Related citations

358. **Effects of pharmacological agents on the lifespan phenotype of Drosophila DJ-1beta mutants.**
Lavara-Culebras E, Muñoz-Soriano V, Gómez-Pastor R, Matallana E, Paricio N.
PMID: 20423725 [PubMed - indexed for MEDLINE]
Related citations

359. **JNK3 mediates paraquat- and rotenone-induced dopaminergic neuron death.**
Choi WS, Abel G, Klintworth H, Flavell RA, Xia Z.
Related citations
360. **Mechanisms of rotenone-induced proteasome inhibition.**
Chou AP, Li S, Fitzmaurice AG, Bronstein JM.
Related citations

361. **Combined R-alpha-lipoic acid and acetyl-L-carnitine exerts efficient preventative effects in a cellular model of Parkinson's disease.**
PMID: 20414966 [PubMed - indexed for MEDLINE]
Related citations

362. **Phenothiazines interfere with dopaminergic neurodegeneration in Caenorhabditis elegans models of Parkinson's disease.**
Mocko JB, Kern A, Moosmann B, Behl C, Hajieva P.
PMID: 20403440 [PubMed - indexed for MEDLINE]
Related citations

363. **Environmental factors and Parkinson's disease: a case-control study in Belgrade, Serbia.**
Vlajinac HD, Sipetic SB, Maksimovic JM, Marinkovic JM, Dzoljic ED, Ratkov IS, Kostic VS.
PMID: 20402575 [PubMed - indexed for MEDLINE]
Related citations

364. **A trojan horse for Parkinson's disease.**
Hu Y, Tong Y.
PMID: 20371768 [PubMed - indexed for MEDLINE]
Related citations

365. **Increased reactive oxygen species production in the brain after repeated low-dose pesticide paraquat exposure in rats. A comparison with peripheral tissues.**
Kuter K, Nowak P, Golembiowska K, Ossowska K.
PMID: 20369291 [PubMed - indexed for MEDLINE]
Related citations

366. **Inhibition of hydrogen sulfide generation contributes to 1-methyl-4-phenylpyridinium ion-**
induced neurotoxicity.
Tang XQ, Fan LL, Li YJ, Shen XT, Zhanh YY, He JQ, Xu JH, Hu B, Li YJ.
PMID: 20361290 [PubMed - indexed for MEDLINE]
Related citations

367. [Risk factors for Parkinson disease: an epidemiologic study].
Pereira D, Garrett C.
Related citations

368. Persistent organochlorine pesticides in serum and risk of Parkinson disease.
Weisskopf MG, Knekt P, O'Reilly EJ, Lytytinen J, Reunanen A, Laden F, Altshul L, Ascherio A.
Related citations

369. dl-3-n-Butylphthalide prevents oxidative damage and reduces mitochondrial dysfunction in an MPP(+) induced cellular model of Parkinson's disease.
Huang JZ, Chen YZ, Su M, Zheng HF, Yang YP, Chen J, Liu CF.
PMID: 20347933 [PubMed - indexed for MEDLINE]
Related citations

370. Protective effects of xyloketal B against MPP+-induced neurotoxicity in Caenorhabditis elegans and PC12 cells.
PMID: 20347725 [PubMed - indexed for MEDLINE]
Related citations

371. Cytochrome P450 2D6 enzyme neuroprotects against 1-methyl-4-phenylpyridinium toxicity in SH-SY5Y neuronal cells.
Mann A, Tyndale RF.
PMID: 20345925 [PubMed - indexed for MEDLINE]
Related citations
 Related citations

373. Human PON1, a biomarker of risk of disease and exposure.
 Furlong CE, Suzuki SM, Stevens RC, Marsillach J, Richter RJ, Jarvik GP, Checkoway H,
 Samii A, Costa LG, Griffith A, Roberts JW, Yearout D, Zabetian CP.
 2010 Mar 23. Review.
 Related citations

374. Insights into the mechanisms of toxicity and tolerance to the agricultural fungicide
 mancozeb in yeast, as suggested by a chemogenomic approach.
 Dias PJ, Teixeira MC, Telo JP, Sá-Correia I.
 PMID: 20337531 [PubMed - indexed for MEDLINE]
 Related citations

375. Binding of anti-Parkinson's disease drugs to human serum albumin is allosterically
 modulated.
 PMID: 20225277 [PubMed - indexed for MEDLINE]
 Related citations

376. The toxic influence of paraquat on hippocampus of mice: involvement of oxidative
 stress.
 PMID: 20211647 [PubMed - indexed for MEDLINE]
 Related citations

377. Dopamine-dependent neurodegeneration in Drosophila models of familial and sporadic
 Parkinson's disease.
 Bayersdorfer F, Voigt A, Schneuwly S, Botella JA.
 PMID: 20211259 [PubMed - indexed for MEDLINE]
 Related citations

378. Activation of apoptosis signal-regulating kinase 1 is a key factor in paraquat-induced cell
 death: modulation by the Nrf2/Trx axis.

Related citations

379. Lysosomal degradation of alpha-synuclein in vivo.

Related citations

380. Caffeine protects against combined paraquat and maneb-induced dopaminergic neuron degeneration.

Related citations

381. Advances in environmental epidemiology.
PMID: 20187243 [PubMed - indexed for MEDLINE]

Related citations

382. Formation of parkin aggregates and enhanced PINK1 accumulation during the pathogenesis of Parkinson's disease.
PMID: 20171192 [PubMed - indexed for MEDLINE]

Related citations

383. Minocycline protects dopaminergic neurons against long-term rotenone toxicity.
PMID: 20169778 [PubMed - indexed for MEDLINE]

Related citations

384. Hexokinase II gene transfer protects against neurodegeneration in the rotenone and MPTP mouse models of Parkinson's disease.
PMID: 20143419 [PubMed - indexed for MEDLINE]

Related citations

385. **Glycogen synthase kinase 3β and its phosphorylated form (Y216) in the paraquat-induced model of parkinsonism.**
PMID: 20143200 [PubMed - indexed for MEDLINE]

Related citations

386. **Autophagy protects the rotenone-induced cell death in alpha-synuclein overexpressing SH-SY5Y cells.**
PMID: 20117172 [PubMed - indexed for MEDLINE]

Related citations

387. **1-Methyl-4-phenyl-pyridinium time-dependently alters expressions of oxoguanine glycosylase 1 and xeroderma pigmentosum group F protein in PC12 cells.**
PMID: 20101267 [PubMed - indexed for MEDLINE]

Related citations

388. **Progression of Parkinson's disease pathology is reproduced by intragastric administration of rotenone in mice.**

Related citations

389. **Environmental neurotoxic pesticide increases histone acetylation to promote apoptosis in dopaminergic neuronal cells: relevance to epigenetic mechanisms of neurodegeneration.**

Related citations

390. **Lessons from the rotenone model of Parkinson's disease.**
Greenamyre JT, Cannon JR, Drolet R, Mastroberardino PG.
Paraquat and Parkinson's disease.
Berry C, La Vecchia C, Nicotera P.

Effects of MPP+ on the molecular pathways involved in cell cycle control in B65 neuroblastoma cells.
PMID: 20080185 [PubMed - indexed for MEDLINE]

Vulnerability of peripheral catecholaminergic neurons to MPTP is not regulated by alpha-synuclein.
PMID: 20079841 [PubMed - indexed for MEDLINE]

Toxic influence of chronic oral administration of paraquat on nigrostriatal dopaminergic neurons in C57BL/6 mice.
Ren JP, Zhao YW, Sun XJ.

MKK6 binds and regulates expression of Parkinson's disease-related protein LRRK2.

Well-water consumption and Parkinson's disease in rural California.
Gatto NM, Cockburn M, Bronstein J, Manthripragada AD, Ritz B.
397. **Pesticides and Parkinson's disease: the legacy of contaminated well water.**
Adler T.
Related citations

398. **Neuroprotective effects of hydrogen sulfide on Parkinson's disease rat models.**
Hu LF, Lu M, Tiong CX, Dawe GS, Hu G, Bian JS.
PMID: 20041858 [PubMed-indexed for MEDLINE]
Related citations

399. **Compounds from an unbiased chemical screen reverse both ER-to-Golgi trafficking defects and mitochondrial dysfunction in Parkinson's disease models.**
Related citations

400. **Apolipoprotein E genotypes in Mexican patients with Parkinson's disease.**
PMID: 20037210 [PubMed-indexed for MEDLINE]

401. **Organochlorine pesticides dieldrin and lindane induce cooperative toxicity in dopaminergic neurons: role of oxidative stress.**
Sharma H, Zhang P, Barber DS, Liu B.
PMID: 20036686 [PubMed-indexed for MEDLINE]
Related citations

402. **Pathogenesis of sporadic Parkinson's disease: contribution of genetic and environmental risk factors.**
Takahashi R, Kawamata J, Takeuchi H.
403. **Occupational factors and risk of Parkinson's disease: A population-based case-control study.**
PMID: 20025075 [PubMed - indexed for MEDLINE] [Free PMC Article]

404. **Vascular endothelial growth factor B (VEGF-B) is up-regulated and exogenous VEGF-B is neuroprotective in a culture model of Parkinson's disease.**
Falk T, Zhang S, Sherman SJ.
PMID: 20003314 [PubMed] [Free PMC Article]

405. **The effect of antiparkinsonian drugs on oxidative stress induced pathological [3H]dopamine efflux after in vitro rotenone exposure in rat striatal slices.**
Milusheva E, Baranyi M, Kormos E, Hracsokó Z, Sylvester Vizi E, Sperlágh B.
PMID: 19995567 [PubMed - indexed for MEDLINE]

406. **Regulation of matrix metalloproteinase-9 gene expression in MPP+- or 6-OHDA-treated human neuroblastoma SK-N-BE(2)C cells.**
Kim SY, Woo MS, Park JS, Kim HS.
PMID: 19962414 [PubMed - indexed for MEDLINE]

407. **PINK1 polymorphism IVS1-7 A-->G, exposure to environmental risk factors and anticipation of disease onset in Brazilian patients with early-onset Parkinson's Disease.**
Godeiro C Jr, Aguiar PM, Felício AC, Barsottini OG, Silva SM, Borges V, Andrade LA, Ferraz HB.
PMID: 19944740 [PubMed - indexed for MEDLINE]

408. **DNA polymerase-beta is required for 1-methyl-4-phenylpyridinium-induced apoptotic death in neurons.**

Related citations

Related citations

Related citations

Related citations

Related citations

Related citations

414. Gene therapy using lactoferrin-modified nanoparticles in a rotenone-induced chronic
Parkinson model.
PMID: 19909981 [PubMed - indexed for MEDLINE]
Related citations

415. Paraoxonase 1, agricultural organophosphate exposure, and Parkinson disease.
Manthripragada AD, Costello S, Cockburn MG, Bronstein JM, Ritz B.
Related citations

416. Inhibition by rotenone of mesencephalic neural stem-cell migration in a neurosphere assay in vitro.
Ishido M, Suzuki J.
PMID: 19900533 [PubMed - indexed for MEDLINE]
Related citations

417. The neuroprotective role of tissue inhibitor of metalloproteinase-2 in MPP+- or 6-OHDA-treated SK-N-BE(2)C and SH-SY5Y human neuroblastoma cells.
Kim SY, Woo MS, Park JS, Hyun JW, Kim YS, Kim HS.
PMID: 19883732 [PubMed - indexed for MEDLINE]
Related citations

418. Effects of insulin-like growth factor-1 on rotenone-induced apoptosis in human lymphocyte cells.
Avila-Gomez IC, Velez-Pardo C, Jimenez-Del-Rio M.
PMID: 19874289 [PubMed - indexed for MEDLINE]
Related citations

419. Anemia or low hemoglobin levels preceding Parkinson disease: a case-control study.
Related citations
 Kalivendi SV, Yedlapudi D, Hillard CJ, Kalyanaraman B.
 PMID: 19857570 [PubMed - indexed for MEDLINE]
 Related citations

421. Panaxatriol saponins extracted from Panax notoginseng induces thioredoxin-1 and prevents 1-methyl-4-phenylpyridinium ion-induced neurotoxicity.
 Luo FC, Wang SD, Li K, Nakamura H, Yodoi J, Bai J.
 PMID: 19857566 [PubMed - indexed for MEDLINE]
 Related citations

422. Synphilin-1 exhibits trophic and protective effects against Rotenone toxicity.
 PMID: 19857556 [PubMed - indexed for MEDLINE]
 Related citations

423. Professional exposure to pesticides and Parkinson disease.
 PMID: 19847896 [PubMed - indexed for MEDLINE]
 Related citations

424. HDAC inhibitor trichostatin A-inhibited survival of dopaminergic neuronal cells.
 PMID: 19835929 [PubMed - indexed for MEDLINE]
 Related citations

425. Enhanced metallothionein gene expression induced by mitochondrial oxidative stress is reduced in phospholipid hydroperoxide glutathione peroxidase-overexpressed cells.
 Kadota Y, Suzuki S, Ideta S, Fukinbara Y, Kawakami T, Imai H, Nakagawa Y, Sato M.
 PMID: 19818760 [PubMed - indexed for MEDLINE]
 Related citations
426. Conjugal Parkinsonism and Parkinson disease: a case series with environmental risk factor analysis.
Related citations

427. Sesamin modulates tyrosine hydroxylase, superoxide dismutase, catalase, inducible NO synthase and interleukin-6 expression in dopaminergic cells under MPP+-induced oxidative stress.
Related citations

428. Pyrimido[5,4-e][1,2,4]triazine-5,7(1H,6H)-dione derivatives: their cytoprotection effect from rotenone toxicity and preliminary DMPK properties.
Related citations

429. Interferon-gamma deficiency modifies the motor and co-morbid behavioral pathology and neurochemical changes provoked by the pesticide paraquat.
Related citations

430. NF-kappaB mediates MPP+-induced apoptotic cell death in neuroblastoma cells SH-EP1 through JNK and c-Jun/AP-1.
Related citations

431. Chrysanthemum morifolium Ramat (CM) extract protects human neuroblastoma SH-SYSY cells against MPP+-induced cytotoxicity.
Differential contribution of the mitochondrial respiratory chain complexes to reactive oxygen species production by redox cycling agents implicated in parkinsonism.
Drechsel DA, Patel M.

Mitochondrial uncoupling protein-2 (UCP2) mediates leptin protection against MPP+ toxicity in neuronal cells.
Ho PW, Liu HF, Ho JW, Zhang WY, Chu AC, Kwok KH, Ge X, Chan KH, Ramsden DB, Ho SL.

Novel mitochondrial substrates of omi indicate a new regulatory role in neurodegenerative disorders.
Johnson F, Kaplitt MG.

Occupation and risk of parkinsonism: a multicenter case-control study.
PMID: 19752299 [PubMed - indexed for MEDLINE]

Influence of dermal exposure to the pyrethroid insecticide deltamethrin on rat brain microanatomy and cholinergic/dopaminergic neurochemistry.
Tayebati SK, Di Tullio MA, Ricci A, Amenta F.
PMID: 19748499 [PubMed - indexed for MEDLINE]

KATP channel openers protect mesencephalic neurons against MPP+-induced cytotoxicity via inhibition of ROS production.
Xie J, Duan L, Qian X, Huang X, Ding J, Hu G.
PMID: 19746425 [PubMed - indexed for MEDLINE]

Related citations

438. Neuroprotective efficacy of Bacopa monnieri against rotenone induced oxidative stress and neurotoxicity in Drosophila melanogaster.
Hosamani R, Muralidhara.
PMID: 19744517 [PubMed - indexed for MEDLINE]

Related citations

439. Rg1 protects the MPP+-treated MES23.5 cells via attenuating DMT1 up-regulation and cellular iron uptake.
Xu H, Jiang H, Wang J, Xie J.
PMID: 19744503 [PubMed - indexed for MEDLINE]

Related citations

440. Paraquat activates the IRE1/ASK1/JNK cascade associated with apoptosis in human neuroblastoma SH-SY5Y cells.
Yang W, Tiffany-Castiglioni E, Koh HC, Son IH.
PMID: 19735704 [PubMed - indexed for MEDLINE]

Related citations

441. Cyclo(His-Pro) up-regulates heme oxygenase 1 via activation of Nrf2-ARE signalling.
Minelli A, Conte C, Grottelli S, Bellezza I, Emiliani C, Bolaños JP.
PMID: 19735445 [PubMed - indexed for MEDLINE]

Related citations

442. Environmental toxins and Parkinson's disease: what have we learned from pesticide-induced animal models?
Cicchetti F, Drouin-Ouellet J, Gross RE.
PMID: 19729209 [PubMed - indexed for MEDLINE]

Related citations

443. Protective effect of histamine H2 receptor antagonist ranitidine against rotenone-induced apoptosis.
Park HJ, Kim HJ, Park HK, Chung JH.
PMID: 19723537 [PubMed - indexed for MEDLINE]
Related citations

444. Effects of epigallocatechin gallate on rotenone-injured murine brain cultures.
PMID: 19707849 [PubMed - indexed for MEDLINE]
Related citations

445. The effects of polyphenols on survival and locomotor activity in Drosophila melanogaster exposed to iron and paraquat.
Jimenez-Del-Rio M, Guzman-Martinez C, Velez-Pardo C.
PMID: 19701790 [PubMed - indexed for MEDLINE]
Related citations

446. Rapamycin protects against rotenone-induced apoptosis through autophagy induction.
Pan T, Rawal P, Wu Y, Xie W, Jankovic J, Le W.
PMID: 19682553 [PubMed - indexed for MEDLINE]
Related citations

447. Melatonin treatment potentiates neurodegeneration in a rat rotenone Parkinson's disease model.
Tapias V, Cannon JR, Greenamyre JT.
PMID: 19681169 [PubMed - indexed for MEDLINE]
Related citations

448. Curcumin enhances paraquat-induced apoptosis of N27 mesencephalic cells via the generation of reactive oxygen species.
Ortiz-Ortiz MA, Morán JM, Bravosanpedro JM, González-Polo RA, Niso-Santano M, Anantharam V, Kanthasamy AG, Soler G, Fuentes JM.
Related citations

Washam C.
PMID: 19654900 [PubMed - indexed for MEDLINE]
Free PMC Article
Related citations

450. **Neuroprotective effect of the antiparkinsonian drug pramipexole against nigrostriatal dopaminergic degeneration in rotenone-treated mice.**
PMID: 19647776 [PubMed - indexed for MEDLINE]
Related citations

451. **Alpha-synuclein knockdown attenuates MPP+ induced mitochondrial dysfunction of SH-SY5Y cells.**
PMID: 19646423 [PubMed - indexed for MEDLINE]
Related citations

452. **Paraquat induces oxidative stress, neuronal loss in substantia nigra region and parkinsonism in adult rats: neuroprotection and amelioration of symptoms by water-soluble formulation of coenzyme Q10.**
PMID: 19635141 [PubMed - indexed for MEDLINE]
Free PMC Article
Related citations

453. [**Pesticides and parkinson's: a confirmed link.**](http://link)
Nau JY.
PMID: 19634540 [PubMed - indexed for MEDLINE]
Related citations

454. **Alteration of NRSF expression exacerbating 1-methyl-4-phenyl-pyridinium ion-induced cell death of SH-SY5Y cells.**
PMID: 19631241 [PubMed - indexed for MEDLINE]
Related citations

455. **Valproic acid is neuroprotective in the rotenone rat model of Parkinson's disease:**
involvement of alpha-synuclein.
Monti B, Gatta V, Piretti F, Raffaelli SS, Virgili M, Contestabile A.
PMID: 19626387 [PubMed-indexed for MEDLINE]
Related citations

456. LRRK2 modulates vulnerability to mitochondrial dysfunction in Caenorhabditis elegans.
Related citations

457. Quantification of Paraquat, MPTP, and MPP+ in brain tissue using microwave-assisted solvent extraction (MASE) and high-performance liquid chromatography-mass spectrometry.
Winnik B, Barr DB, Thiruchelvam M, Montesano MA, Richfield EK, Buckley B.
PMID: 19618168 [PubMed-indexed for MEDLINE]
Related citations

458. Effects of glutamate and alpha2-noradrenergic receptor antagonists on the development of neurotoxicity produced by chronic rotenone in rats.
Alam M, Danysz W, Schmidt WJ, Dekundy A.
PMID: 19616571 [PubMed-indexed for MEDLINE]
Related citations

459. Elevated serum pesticide levels and risk of Parkinson disease.
Richardson JR, Shalat SL, Buckley B, Winnik B, O'Suilleabhain P, Diaz-Arrastia R, Reisch J, German DC.
Related citations

460. Chronic rotenone exposure reproduces Parkinson's disease gastrointestinal neuropathology.
Drolet RE, Cannon JR, Montero L, Greenamyre JT.
PMID: 19595768 [PubMed-indexed for MEDLINE]
Related citations
461. The expression of CYP2D22, an ortholog of human CYP2D6, in mouse striatum and its modulation in 1-methyl 4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinson's disease phenotype and nicotine-mediated neuroprotection.
Singh S, Singh K, Patel DK, Singh C, Nath C, Singh VK, Singh RK, Singh MP.
PMID: 19594327 [PubMed - indexed for MEDLINE]
Related citations

462. Dopamine transporter genetic variants and pesticides in Parkinson's disease.
Ritz BR, Manthripragada AD, Costello S, Lincoln SJ, Farrer MJ, Cockburn M, Bronstein J.
Related citations

463. Induction of heat shock protein 70 reduces the alteration of striatal electrical activity caused by mitochondrial impairment.
PMID: 19580850 [PubMed - indexed for MEDLINE]
Related citations

464. Pegylated nanoliposomes remote-loaded with the antioxidant tempamine ameliorate experimental autoimmune encephalomyelitis.
Kizelsztein P, Ovadia H, Garbuzenko O, Sigal A, Barenholz Y.
PMID: 19564052 [PubMed - indexed for MEDLINE]
Related citations

465. Rotenone and paraquat do not directly activate microglia or induce inflammatory cytokine release.
Klintworth H, Garden G, Xia Z.
Related citations

466. Retinal pigment epithelial cells secrete neurotrophic factors and synthesize dopamine: possible contribution to therapeutic effects of RPE cell transplantation in Parkinson's disease.
Ming M, Li X, Fan X, Yang D, Li L, Chen S, Gu Q, Le W.
467. **Fucoidan protects against dopaminergic neuron death in vivo and in vitro.**
PMID: 19545563 [PubMed - indexed for MEDLINE]

468. **Tranexamic acid protects against rotenone-induced apoptosis in human neuroblastoma SH-SY5Y cells.**
PMID: 19539006 [PubMed - indexed for MEDLINE]

469. **Metabolic control analysis in a cellular model of elevated MAO-B: relevance to Parkinson's disease.**

470. **The carboxyl-terminal domain of the heavy chain of tetanus toxin prevents dopaminergic degeneration and improves motor behavior in rats with striatal MPP(+) -lesions.**
PMID: 19523997 [PubMed - indexed for MEDLINE]

471. **Rotenone induces cell death of cholinergic neurons in an organotypic co-culture brain slice model.**
PMID: 19495971 [PubMed - indexed for MEDLINE]

472. **Effect of pesticides on cell survival in liver and brain rat tissues.**
Fibroblast growth factor 9 prevents MPP+-induced death of dopaminergic neurons and is involved in melatonin neuroprotection in vivo and in vitro.
Huang JY, Hong YT, Chuang JI.
PMID: 19476551 [PubMed - indexed for MEDLINE]

Protective effects of resveratrol and quercetin against MPP+-induced oxidative stress act by modulating markers of apoptotic death in dopaminergic neurons.
Bournival J, Quessy P, Martinoli MG.
PMID: 19466539 [PubMed - indexed for MEDLINE]

Effects of the organochlorine pesticide methoxychlor on dopamine metabolites and transporters in the mouse brain.
Schuh RA, Richardson JR, Gupta RK, Flaws JA, Fiskum G.

The role of NADPH oxidase 1-derived reactive oxygen species in paraquat-mediated dopaminergic cell death.
Cristóvão AC, Choi DH, Baltazar G, Beal MF, Kim YS.

The homocysteine-inducible endoplasmic reticulum stress protein counteracts calcium store depletion and induction of CCAAT enhancer-binding protein homologous protein in a neurotoxin model of Parkinson disease.
Chigurupati S, Wei Z, Belal C, Vandermey M, Kyriazis GA, Arumugam TV, Chan SL.

Paraquat induces alternation of the dopamine catabolic pathways and glutathione levels in the substantia nigra of mice.
Kang MJ, Gil SJ, Koh HC.
5. PMID: 19446248 [PubMed - indexed for MEDLINE]
Related citations

479. Involvement of glyceraldehyde-3-phosphate dehydrogenase in rotenone-induced cell apoptosis: relevance to protein misfolding and aggregation.
PMID: 19445904 [PubMed - indexed for MEDLINE]
Related citations

480. Pigment epithelium derived factor (PEDF) is neuroprotective in two in vitro models of Parkinson's disease.
Falk T, Zhang S, Sherman SJ.
PMID: 19442875 [PubMed - indexed for MEDLINE]
Related citations

481. Inhibition of platelet aggregation by 1-methyl-4-phenyl pyridinium ion (MPP+) through ATP depletion: Evidence for the reduced platelet activities in Parkinson's disease.
PMID: 19437333 [PubMed - indexed for MEDLINE]
Related citations

482. Involvement of cytosolic and mitochondrial GSK-3beta in mitochondrial dysfunction and neuronal cell death of MPTP/MPP-treated neurons.
Petit-Paitel A, Brau F, Cazareth J, Chabry J.
Related citations

483. Rotenone reduces Mg2+-dependent block of NMDA currents in substantia nigra dopamine neurons.
Wu YN, Johnson SW.
PMID: 19428506 [PubMed - indexed for MEDLINE]
Related citations

484. Silencing DJ-1 reveals its contribution in paraquat-induced autophagy.
González-Polo R, Niso-Santano M, Morán JM, Ortiz-Ortiz MA, Bravo-San Pedro JM, Soler G, Fuentes JM.
Related citations

485. **A2A adenosine receptor antagonists protect the striatum against rotenone-induced neurotoxicity.**
PMID: 19416678 [PubMed - indexed for MEDLINE]
Related citations

486. **A role for a novel protein, nucleolin, in Parkinson's disease.**
Caudle WM, Kitsou E, Li J, Bradner J, Zhang J.
Related citations

487. **Delayed gastric emptying and enteric nervous system dysfunction in the rotenone model of Parkinson's disease.**
Greene JG, Noorian AR, Srinivasan S.
Related citations

488. **Tyrosine hydroxylase-positive amacrine interneurons in the mouse retina are resistant against the application of various parkinsonian toxins.**
Nagel F, Bähr M, Dietz GP.
PMID: 19406215 [PubMed - indexed for MEDLINE]
Related citations

489. **A highly reproducible rotenone model of Parkinson's disease.**
Cannon JR, Tapias V, Na HM, Honick AS, Drolet RE, Greenamyre JT.
Related citations

490. **Effect of centrophenoxine against rotenone-induced oxidative stress in an animal model of Parkinson's disease.**
Verma R, Nehru B.
PMID: 19375462 [PubMed - indexed for MEDLINE]
Related citations

491. **BDNF mediates the neuroprotective effects of positive AMPA receptor modulators against MPP+-induced toxicity in cultured hippocampal and mesencephalic slices.**
Jourdi H, Hamo L, Oka T, Seegan A, Baudry M.
Related citations

492. **Chapter 22 The uptake and interactions of the redox cycler paraquat with mitochondria.**
Cochemé HM, Murphy MP.
PMID: 19348901 [PubMed - indexed for MEDLINE]
Related citations

493. **Survival motor neuron deficiency enhances progression in an amyotrophic lateral sclerosis mouse model.**
Turner BJ, Parkinson NJ, Davies KE, Talbot K.
PMID: 19332122 [PubMed - indexed for MEDLINE]
Related citations

494. **In vitro dopaminergic neuroprotective and in vivo antiparkinsonian-like effects of Delta 3,2-hydroxybakuchiol isolated from Psoralea corylifolia (L.).**
Zhao G, Zheng XW, Qin GW, Gai Y, Jiang ZH, Guo LH.
PMID: 19322517 [PubMed - indexed for MEDLINE]
Related citations

495. **Pyrethroid and organophosphate insecticide exposure in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine mouse model of Parkinson's disease: an immunohistochemical analysis of tyrosine hydroxylase and glial fibrillary acidic protein in dorsolateral striatum.**
Dodd CA, Klein BG.
PMID: 19318502 [PubMed - indexed for MEDLINE]
Related citations

496. **MPTP-induced model of Parkinson's disease in cytochrome P450 2E1 knockout mice.**
Viaggi C, Vaglini F, Pardini C, Caramelli A, Corsini GU.
497. **Zocor Forte (simvastatin) has a neuroprotective effect against LPS striatal dopaminergic terminals injury, whereas against MPP+ does not.**

Santiago M, Hernández-Romero MC, Machado A, Cano J.

PMID: 19292984 [PubMed - indexed for MEDLINE] Related citations

498. **Vascular pathology in male Lewis rats following short-term, low-dose rotenone administration.**

Allen AL, Luo C, Montgomery DL, Rajput AH, Robinson CA, Rajput A.

PMID: 19276049 [PubMed - indexed for MEDLINE] Free Article Related citations

499. **Parkinson's disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California.**

Costello S, Cockburn M, Bronstein J, Zhang X, Ritz B.

500. **Nicotinic receptor-mediated neuroprotection in neurodegenerative disease models.**

Shimohama S.

PMID: 19252273 [PubMed - indexed for MEDLINE] Free Article Related citations

501. **A novel transferrin/TfR2-mediated mitochondrial iron transport system is disrupted in Parkinson's disease.**

502. **Modulation of connexin 43 in rotenone-induced model of Parkinson's disease.**

Kawasaki A, Hayashi T, Nakachi K, Trosko JE, Sugihara K, Kotake Y, Ohta S.

PMID: 19232380 [PubMed - indexed for MEDLINE]
Related citations

503. [Cellular pathophysiology of Parkinson's disease].
Takeda A, Sugeno N, Hasegawa T, Kobayashi M, Kikuchi A.
PMID: 19198139 [PubMed - indexed for MEDLINE]
Related citations

504. MDR1 variants and risk of Parkinson disease. Association with pesticide exposure?
PMID: 19184162 [PubMed - indexed for MEDLINE]
Related citations

Related citations

506. Alterations of N/OFQ and NOP receptor gene expression in the substantia nigra and caudate putamen of MPP+ and 6-OHDA lesioned rats.
Di Benedetto M, Cavina C, D'Addario C, Leoni G, Candeletti S, Cox BM, Romualdi P.
Related citations

507. A novel derivative of the natural agent deguelin for cancer chemoprevention and therapy.
Kim WY, Chang DJ, Hennessy B, Kang HJ, Yoo J, Han SH, Kim YS, Park HJ, Seo SY, Mills G, Kim KW, Hong WK, Suh YG, Lee HY.
Related citations

508. Insights into yeast adaptive response to the agricultural fungicide mancozeb: a
toxicoproteomics approach.
Santos PM, Simões T, Sá-Correia I.
PMID: 19137554 [PubMed - indexed for MEDLINE]

Related citations

509. Paraquat is excluded by the blood brain barrier in rhesus macaque: An in vivo pet study.
Bartlett RM, Holden JE, Nickles RJ, Murrali D, Barbee DL, Barnhart TE, Christian BT, DeJesus OT.

Related citations

510. Antidepressants reveal differential effect against 1-methyl-4-phenylpyridinium toxicity in differentiated PC12 cells.
Han YS, Lee CS.
PMID: 19135049 [PubMed - indexed for MEDLINE]

Related citations

511. Protective effect against Parkinson's disease-related insults through the activation of XBP1.
PMID: 19135031 [PubMed - indexed for MEDLINE]

Related citations

512. Rotenone damages striatal organotypic slice culture.
Moldzio R, Piskernik C, Radad K, Rausch WD.
PMID: 19120153 [PubMed - indexed for MEDLINE]

Related citations

513. Catalpol attenuates nitric oxide increase via ERK signaling pathways induced by rotenone in mesencephalic neurons.
PMID: 19111870 [PubMed - indexed for MEDLINE]

Related citations

514. Evaluation of a TiO2 photocatalysis treatment on nitrophenols and nitramines contaminated
plant wastewaters by solid-phase extraction coupled with ESI HPLC-MS.
PMID: 19111394 [PubMed - indexed for MEDLINE]

Related citations
515. Protection against paraquat and A53T alpha-synuclein toxicity by cabergoline is partially mediated by dopamine receptors.
Chau KY, Korlipara LV, Cooper JM, Schapira AH.
PMID: 19101702 [PubMed - indexed for MEDLINE]

Related citations
516. Effect of EGb761 supplementation on the content of copper in mouse brain in an animal model of Parkinson's disease.
Rojas P, Montes S, Serrano-García N, Rojas-Castañeda J.
PMID: 19091511 [PubMed - indexed for MEDLINE]

Related citations
517. Thymoquinone protects dopaminergic neurons against MPP+ and rotenone.
Radad K, Moldzio R, Taha M, Rausch WD.
PMID: 19089849 [PubMed - indexed for MEDLINE]

Related citations
518. Impairing the mitochondrial fission and fusion balance: a new mechanism of neurodegeneration.
Knott AB, Bossy-Wetzel E.

Related citations
519. Parkin protects dopaminergic neurons against microtubule-depolymerizing toxins by attenuating microtubule-associated protein kinase activation.
Ren Y, Jiang H, Yang F, Nakaso K, Feng J.

Related citations
520. Unregulated mitochondrial GSK3beta activity results in NADH:ubiquinone oxidoreductase
deficiency.
King TD, Clodfelder-Miller B, Barksdale KA, Bijur GN.
Related citations

521. Mitochondrial function and morphology are impaired in parkin-mutant fibroblasts.
Related citations

522. Analysis of targeted mutation in DJ-1 on cellular function in primary astrocytes.
Ashley AK, Hanneman WH, Katoh T, Moreno JA, Pollack A, Tjalkens RB, Legare ME.
Related citations

523. Effects of all-trans-retinoic acid on human SH-SY5Y neuroblastoma as in vitro model in neurotoxicity research.
Cheung YT, Lau WK, Yu MS, Lai CS, Yeung SC, So KF, Chang RC.
Related citations

524. Ghrelin antagonized 1-methyl-4-phenylpyridinium (MPP(+))-induced apoptosis in MES23.5 cells.
Dong J, Song N, Xie J, Jiang H.
Related citations

525. MPTP and MPP+ target specific aminergic cell populations in larval zebrafish.
Sallinen V, Torkko V, Sundvik M, Reenilä I, Khrustalyov D, Kaslin J, Panula P.
Related citations

526. Pesticide/environmental exposures and Parkinson's disease in East Texas.
Dhillon AS, Tarbution GL, Levin JL, Plotkin GM, Lowry LK, Nalbone JT, Shepherd S.
527. **The effect of alpha-synuclein knockdown on MPP+ toxicity in models of human neurons.**

528. **Iron-enhanced paraquat-mediated dopaminergic cell death due to increased oxidative stress as a consequence of microglial activation.**
Peng J, Stevenson FF, Oo ML, Andersen JK.

529. **Genetics, environmental factors and the emerging role of epigenetics in neurodegenerative diseases.**
Migliore L, Coppedè F.
PMID: 19026668 [PubMed - indexed for MEDLINE]

530. **Involvement of ubiquitin proteasome system in protective mechanisms of Puerarin to MPP(+) elicited apoptosis.**
PMID: 19022306 [PubMed - indexed for MEDLINE]

531. **Low dose rotenone treatment causes selective transcriptional activation of cell death related pathways in dopaminergic neurons in vivo.**
PMID: 19013527 [PubMed - indexed for MEDLINE]

532. **Smoking and Parkinson's disease: does nicotine affect alpha-synuclein fibrillation?**

533. Opening of microglial K(ATP) channels inhibits rotenone-induced neuroinflammation.

534. Okadaic acid protects human neuroblastoma SH-SY5Y cells from 1-methyl-4-phenylpyridinium ion-induced apoptosis.

536. Synthesis of chiral 3-methyl- and 3-methyl-N-propargyl-1,2,3,4-tetrahydroisoquinoline and prevention of MPP+-induced cytotoxicity.

537. The involvement of nitric oxide in maneb- and paraquat-induced oxidative stress in rat polymorphonuclear leukocytes.

91
Repeated developmental exposure to chlorpyrifos and methyl parathion causes persistent alterations in nicotinic acetylcholine subunit mRNA expression with chlorpyrifos altering dopamine metabolite levels.
Eells JB, Brown T.
PMID: 18977431 [PubMed - indexed for MEDLINE]

Environmental-induced oxidative stress in neurodegenerative disorders and aging.
Migliore L, Coppedè F.
PMID: 18952194 [PubMed - indexed for MEDLINE]

DJ-1 knock-down in astrocytes impairs astrocyte-mediated neuroprotection against rotenone.
Mullett SJ, Hinkle DA.

Pretreatment with near-infrared light via light-emitting diode provides added benefit against rotenone- and MPP+-induced neurotoxicity.
Ying R, Liang HL, Whelan HT, Eells JT, Wong-Riley MT.
PMID: 18848925 [PubMed - indexed for MEDLINE]

Identification of genes associated with paraquat-induced toxicity in SH-SY5Y cells by PCR array focused on apoptotic pathways.
Moran JM, Gonzalez-Polo RA, Ortiz-Ortiz MA, Niso-Santano M, Soler G, Fuentes JM.
PMID: 18836921 [PubMed - indexed for MEDLINE]

Hydrogen sulfide inhibits rotenone-induced apoptosis via preservation of mitochondrial function.
Hu LF, Lu M, Wu ZY, Wong PT, Bian JS.

PMID: 18824419 [PubMed - indexed for MEDLINE]

PMID: 18817789 [PubMed - indexed for MEDLINE]

Aug 30.
PMID: 18805449 [PubMed - indexed for MEDLINE]

Related citations

551. Increased vulnerability to rotenone-induced neurotoxicity in ceruloplasmin-deficient mice.
Kaneko K, Hineno A, Yoshida K, Ikeda S.
PMID: 18804145 [PubMed - indexed for MEDLINE]

Related citations

552. Parkinson disease: primacy of age as a risk factor for mitochondrial dysfunction.
Vanitallie TB.
PMID: 18803967 [PubMed - indexed for MEDLINE]

Related citations

553. Do early-life insults contribute to the late-life development of Parkinson and Alzheimer diseases?
Miller DB, O'Callaghan JP.
PMID: 18803966 [PubMed - indexed for MEDLINE]

Related citations

554. Nicotinic receptor stimulation protects nigral dopaminergic neurons in rotenone-induced Parkinson's disease models.
PMID: 18803299 [PubMed - indexed for MEDLINE]

Related citations

555. Protective effects of asiatic acid on rotenone- or H2O2-induced injury in SH-SY5Y cells.
Xiong Y, Ding H, Xu M, Gao J.
PMID: 18802751 [PubMed - indexed for MEDLINE]

Related citations

556. Overexpression of heme oxygenase-1 protects dopaminergic neurons against 1-methyl-4-phenylpyridinium-induced neurotoxicity.
Hung SY, Liou HC, Kang KH, Wu RM, Wen CC, Fu WM.

Related citations

557. Arterial baroreflex dysfunction fails to mimic Parkinson's disease in rats.

Related citations

558. Coupling endoplasmic reticulum stress to the cell death program in dopaminergic cells: effect of paraquat.
Chinta SJ, Rane A, Poksay KS, Bredesen DE, Andersen JK, Rao RV.

Related citations

559. Paraquat inhibits postsynaptic AMPA receptors on dopaminergic neurons in the substantia nigra pars compacta.
Lee CY, Lee CH, Shih CC, Liou HH.
PMID: 18761327 [PubMed - indexed for MEDLINE]

Related citations

560. Catalytic metalloporphyrin protects against paraquat neurotoxicity in vivo.
PMID: 18714822 [PubMed - indexed for MEDLINE]

Related citations

561. Polyhydroxylated fullerene derivative C(60)(OH)(24) prevents mitochondrial dysfunction and oxidative damage in an MPP(+) -induced cellular model of Parkinson's disease.
PMID: 18709653 [PubMed - indexed for MEDLINE]

Related citations

562. Iptakalim protects against MPP+-induced degeneration of dopaminergic neurons in association with astrocyte activation.
Yang YJ, Zhang S, Ding JH, Zhou F, Hu G.
PMID: 18700057 [PubMed - indexed for MEDLINE]

563. **Synergistic microglial reactive oxygen species generation induced by pesticides lindane and dieldrin.**
Mao H, Liu B.
PMID: 18695515 [PubMed - indexed for MEDLINE]

564. **Beneficial effects of carnosic acid on dieldrin-induced dopaminergic neuronal cell death.**
PMID: 18695511 [PubMed - indexed for MEDLINE]

565. **Induction of the drug metabolizing enzyme CYP2D in monkey brain by chronic nicotine treatment.**
Mann A, Miksys S, Lee A, Mash DC, Tyndale RF.
PMID: 18687346 [PubMed - indexed for MEDLINE]

566. **Electrophysiology and pharmacology of striatal neuronal dysfunction induced by mitochondrial complex I inhibition.**

567. **Nitric oxide synthase genes and their interactions with environmental factors in Parkinson's disease.**
Hancock DB, Martin ER, Vance JM, Scott WK.

568. **Isolation and identification of Suavissimoside R1 from roots of Rubus parvifollus used for protecting dopaminergic neurons against MPP+ toxicity.**
Yu ZY, Ruan HL, Zhu XN, Wang XL, Chen RZ, Lin YC.
PMID: 18661829 [PubMed - indexed for MEDLINE]
569. **Cyclooxygenase-2 deficiency modifies the neurochemical effects, motor impairment and co-morbid anxiety provoked by paraquat administration in mice.**

Litteljohn D, Mangano EN, Hayley S.
PMID: 18657183 [PubMed - indexed for MEDLINE]

570. **Neoechinulin A protects PC12 cells against MPP+-induced cytotoxicity.**

PMID: 18654001 [PubMed - indexed for MEDLINE]

571. **Pitx3-transfected astrocytes secrete brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor and protect dopamine neurons in mesencephalon cultures.**

Yang D, Peng C, Li X, Fan X, Li L, Ming M, Chen S, Le W.
PMID: 18646205 [PubMed - indexed for MEDLINE]

572. **Synergistic anti-Parkinsonism activity of high doses of B vitamins in a chronic cellular model.**

PMID: 18639366 [PubMed - indexed for MEDLINE]

573. **Overexpression of Kir2.3 in PC12 cells resists rotenone-induced neurotoxicity associated with PKC signaling pathway.**

Wang G, Zeng J, Shen CY, Wang ZQ, Chen SD.
PMID: 18619942 [PubMed - indexed for MEDLINE]

574. **Interaction of mitochondrial respiratory inhibitors and excitotoxins potentiates cell death in hippocampal slice cultures.**

Schuh RA, Matthews CC, Fishman PS.
PMID: 18615648 [PubMed - indexed for MEDLINE]
575. **The effects of piroxicam in the attenuation of MPP+/MPTP toxicity in vitro and in vivo.**
Soliman Y, Jackson T, Mazzio E, Soliman KF.

576. **Update in the epidemiology of Parkinson's disease.**
Elbaz A, Moisan F.
PMID: 18607207 [PubMed - indexed for MEDLINE]

577. **Paraquat exposure reduces nicotinic receptor-evoked dopamine release in monkey striatum.**
O'Leary KT, Parameswaran N, Johnston LC, McIntosh JM, Di Monte DA, Quik M.

578. **Paraquat and maneb induced neurotoxicity.**
Thrash B, Uthayathas S, Karuppagounder SS, Suppiramaniam V, Dhanasekaran M.
PMID: 18605226 [PubMed - indexed for MEDLINE]

579. **Mitochondrial complex I inhibitor rotenone inhibits and redistributes vesicular monoamine transporter 2 via nitration in human dopaminergic SH-SY5Y cells.**
Watabe M, Nakaki T.

580. **Proteasomal inhibition reduces parkin mRNA in PC12 and SH-SY5Y cells.**
PMID: 18586549 [PubMed - indexed for MEDLINE]

581. **Chronic intraventricular administration of 1-methyl-4-phenylpyridinium as a progressive model of Parkinson's disease.**
Related citations

582. Rotenone-induced PC12 cell toxicity is caused by oxidative stress resulting from altered dopamine metabolism.
Related citations

583. Developmental heptachlor exposure increases susceptibility of dopamine neurons to N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) in a gender-specific manner.
Related citations

584. Potent anti-inflammatory and neuroprotective effects of TGF-beta1 are mediated through the inhibition of ERK and p47phox-Ser345 phosphorylation and translocation in microglia.
Related citations

585. Effect of dopaminergic neurotoxin MPTP/MPP+ on coenzyme Q content.
Related citations

586. The effects of environmental neurotoxicants on the dopaminergic system: A possible role in drug addiction.
Related citations

587. The cannabinoid CP55,940 prolongs survival and improves locomotor activity in Drosophila melanogaster against paraquat: implications in Parkinson's disease.
PMID: 18538428 [PubMed - indexed for MEDLINE] Related citations

588. Expression of Cbl-interacting protein of 85 kDa in MPTP mouse model of Parkinson's disease and 1-methyl-4-phenyl-pyridinium ion-treated dopaminergic SH-SY5Y cells.
PMID: 18535749 [PubMed - indexed for MEDLINE] Free Article Related citations

589. Disruption of dopamine transport by DDT and its metabolites.
PMID: 18533268 [PubMed - indexed for MEDLINE] Related citations

591. Triptolide protects against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats: implication for immunosuppressive therapy in Parkinson's disease.
PMID: 18500385 [PubMed - indexed for MEDLINE] Related citations

592. ICP10PK inhibits calpain-dependent release of apoptosis-inducing factor and programmed cell death in response to the toxin MPP+.

593. Mitochondrial function in Parkinson's disease cybrids containing an nt2 neuron-like nuclear background.
Esteves AR, Domingues AF, Ferreira IL, Januário C, Swerdlow RH, Oliveira CR, Cardoso SM.

Related citations

594. **Dopamine transporter inhibitory and antiparkinsonian effect of common flowering quince extract.**
Zhao G, Jiang ZH, Zheng XW, Zang SY, Guo LH.
PMID: 18485464 [PubMed - indexed for MEDLINE]

Related citations

595. **Nmnat delays axonal degeneration caused by mitochondrial and oxidative stress.**
Press C, Milbrandt J.

Related citations

596. **Kynurenic acid attenuates MPP(+) induced dopaminergic neuronal cell death via a Bax-mediated mitochondrial pathway.**
PMID: 18462830 [PubMed - indexed for MEDLINE]

Related citations

597. **Human ApoD, an apolipoprotein up-regulated in neurodegenerative diseases, extends lifespan and increases stress resistance in Drosophila.**
Muffat J, Walker DW, Benzer S.

Related citations

598. **Methionine sulfoxide reductase A protects dopaminergic cells from Parkinson's disease-related insults.**

Related citations
599. **Impact of dietary exposure to food contaminants on the risk of Parkinson's disease.**

PMID: 18455239 [PubMed - indexed for MEDLINE]

Related citations

600. **Parkinson's disease and pesticides: a toxicological perspective.**

Hatcher JM, Pennell KD, Miller GW.

PMID: 18453001 [PubMed - indexed for MEDLINE]

Related citations

601. **Protective effect of the green tea component, L-theanine on environmental toxins-induced neuronal cell death.**

Cho HS, Kim S, Lee SY, Park JA, Kim SJ, Chun HS.

PMID: 18452993 [PubMed - indexed for MEDLINE]

Related citations

602. **Near-infrared light via light-emitting diode treatment is therapeutic against rotenone- and 1-methyl-4-phenylpyridinium ion-induced neurotoxicity.**

Liang HL, Whelan HT, Eells JT, Wong-Riley MT.

PMID: 18440709 [PubMed - indexed for MEDLINE] **Free PMC Article**

Related citations

603. **Gene expression profiles of mouse striatum in control and maneb + paraquat-induced Parkinson's disease phenotype: validation of differentially expressed energy metabolizing transcripts.**

Patel S, Singh K, Singh S, Singh MP.

PMID: 18386188 [PubMed - indexed for MEDLINE]

Related citations

604. **Oxidative insults induce DJ-1 upregulation and redistribution: implications for neuroprotection.**

Lev N, Ickowicz D, Melamed E, Offen D.

Mar 10.
PMID: 18377993 [PubMed - indexed for MEDLINE]

Related citations

605. Pesticide exposure and risk of Parkinson's disease: a family-based case-control study.
Hancock DB, Martin ER, Mayhew GM, Stajich JM, Jewett R, Stacy MA, Scott BL, Vance JM, Scott WK.

Related citations

606. MPP+-induced neuronal death in rats involves tyrosine 33 phosphorylation of WW domain-containing oxidoreductase WOX1.
Lo CP, Hsu LJ, Li MY, Hsu SY, Chuang JI, Tsai MS, Lin SR, Chang NS, Chen ST.
PMID: 18371080 [PubMed - indexed for MEDLINE]

Related citations

Rio MJ, Velez-Pardo C.
PMID: 18365879 [PubMed - indexed for MEDLINE]

Related citations

Miller RL, James-Kracke M, Sun GY, Sun AY.
PMID: 18363100 [PubMed - indexed for MEDLINE]

Related citations

609. Role of reactive oxygen species in the neurotoxicity of environmental agents implicated in Parkinson's disease.
Drechsel DA, Patel M.

Related citations

610. Advanced glycation end products induce in vitro cross-linking of alpha-synuclein and accelerate the process of intracellular inclusion body formation.
Shaikh S, Nicholson LF.
611. **Mechanisms of DJ-1 neuroprotection in a cellular model of Parkinson's disease.**
Liu F, Nguyen JL, Hulleman JD, Li L, Rochet JC.
PMID: 18331584 [PubMed - indexed for MEDLINE]

Sanz E, Quintana A, Battaglia V, Toninello A, Hidalgo J, Ambrosio S, Valoti M, Marco JL, Tipton KF, Unzeta M.
PMID: 18331475 [PubMed - indexed for MEDLINE]

613. **Investigating convergent actions of genes linked to familial Parkinson's disease.**
Wolozin B, Saha S, Guillily M, Ferree A, Riley M.

614. **Alpha-synuclein, pesticides, and Parkinson disease: a case-control study.**
Brighina L, Frigerio R, Schneider NK, Lesnick TG, de Andrade M, Cunningham JM, Farrer MJ, Lincoln SJ, Checkoway H, Rocca WA, Maraganore DM.
PMID: 18322262 [PubMed - indexed for MEDLINE]

615. **Response to "Paraquat: the red herring of Parkinson's disease research".**
LoPachin RM, Gavin T.

616. **Behavioral alterations in rotenone model of Parkinson's disease: attenuation by co-treatment of centrophenoxine.**
Nehru B, Verma R, Khanna P, Sharma SK.
PMID: 18308296 [PubMed - indexed for MEDLINE]
Related citations

617. **Association between parkinsonism and participation in agriculture in Korea.**
Cho JW, Jeon BS, Jeong D, Choi YJ, Lee JY, Lee HS, Hong SY.
Related citations

618. **Melatonin reduces the neuronal loss, downregulation of dopamine transporter, and upregulation of D2 receptor in rotenone-induced parkinsonian rats.**
Lin CH, Huang JY, Ching CH, Chuang JI.
PMID: 18289173 [PubMed - indexed for MEDLINE]
Related citations

619. **Maneb potentiates paraquat neurotoxicity by inducing key Bcl-2 family members.**
Fei Q, Ethell DW.
PMID: 18266926 [PubMed - indexed for MEDLINE]
Related citations

620. **Silencing of peroxiredoxin 3 and peroxiredoxin 5 reveals the role of mitochondrial peroxiredoxins in the protection of human neuroblastoma SH-SY5Y cells toward MPP+.**
De Simoni S, Goemaere J, Knoops B.
PMID: 18262354 [PubMed - indexed for MEDLINE]
Related citations

621. **Neuroprotective effect of the natural iron chelator, phytic acid in a cell culture model of Parkinson's disease.**
Xu Q, Kanthasamy AG, Reddy MB.
PMID: 18255213 [PubMed - indexed for MEDLINE]
Related citations

622. **Paraquat-induced apoptosis in human neuroblastoma SH-SY5Y cells: involvement of p53 and mitochondria.**
Yang W, Tiffany-Castiglioni E.
PMID: 18253895 [PubMed - indexed for MEDLINE]
Related citations
623. **Magnesium exerts both preventive and ameliorating effects in an in vitro rat Parkinson disease model involving 1-methyl-4-phenylpyridinium (MPP+) toxicity in dopaminergic neurons.**

Hashimoto T, Nishi K, Nagasao J, Tsuji S, Oyanagi K.

PMID: 18242592 [PubMed - indexed for MEDLINE]

Related citations

624. **D2/D3 receptor agonist ropinirole protects dopaminergic cell line against rotenone-induced apoptosis through inhibition of caspase- and JNK-dependent pathways.**

Chen S, Zhang X, Yang D, Du Y, Li L, Li X, Ming M, Le W.

PMID: 18242171 [PubMed - indexed for MEDLINE]

Related citations

625. **Effects of the extract of Anemopaegma mirandum (Catuaba) on Rotenone-induced apoptosis in human neuroblastomas SH-SY5Y cells.**

Valverde G De Andrade D, Madureira de Oliveria D, Barreto G, Bertolino LA, Saraceno E, Capani F, Giraldez LD.

PMID: 18241847 [PubMed - indexed for MEDLINE]

Related citations

626. **Protective effects of a new metalloporphyrin on paraquat-induced oxidative stress and apoptosis in N27 cells.**

PMID: 18235974 [PubMed - indexed for MEDLINE] [Free Article]

Related citations

627. **Neuronal death and survival under oxidative stress in Alzheimer and Parkinson diseases.**

Nunomura A, Moreira PI, Lee HG, Zhu X, Castellani RJ, Smith MA, Perry G.

PMID: 18220780 [PubMed - indexed for MEDLINE]

Related citations

628. **Vesicular monoamine transporter substrate/inhibitor activity of MPTP/MPP+ derivatives: a structure-activity study.**

Wimalasena DS, Perera RP, Heyen BJ, Balasooriya IS, Wimalasena K.

PMID: 18220329 [PubMed - indexed for MEDLINE]

Related citations
629. Protection by the NDI1 gene against neurodegeneration in a rotenone rat model of Parkinson's disease.
Marella M, Seo BB, Nakamaru-Ogiso E, Greenamyre JT, Matsumo-Yagi A, Yagi T.
Related citations

630. Sequential and concerted gene expression changes in a chronic in vitro model of parkinsonism.
Greene JG, Greenamyre JT, Dingledine R.
Related citations

631. Up-regulation of divalent metal transporter 1 is involved in 1-methyl-4-phenylpyridinium (MPP(+))-induced apoptosis in MES23.5 cells.
Zhang S, Wang J, Song N, Xie J, Jiang H.
Epub 2008 Jan 8.
PMID: 18191877 [PubMed - indexed for MEDLINE]
Related citations

632. Inflammatory priming of the substantia nigra influences the impact of later paraquat exposure: Neuroimmune sensitization of neurodegeneration.
Mangano EN, Hayley S.
Epub 2008 Jan 10.
PMID: 18187236 [PubMed - indexed for MEDLINE]
Related citations

633. Letter regarding: "Paraquat: the red herring of Parkinson's disease research".
Cory-Slechta DA, Thiruchelvam M, Di Monte DA.
Related citations

634. Trichloroethylene: Parkinsonism and complex 1 mitochondrial neurotoxicity.
PMID: 18157908 [PubMed - indexed for MEDLINE]
Related citations
635. The exploration of rotenone as a toxin for inducing Parkinson's disease in rats, for application in BBB transport and PK-PD experiments.
PMID: 18155613 [PubMed-indexed for MEDLINE]
Related citations

636. Oxidative stress on EAAC1 is involved in MPTP-induced glutathione depletion and motor dysfunction.
Aoyama K, Matsumura N, Watabe M, Nakaki T.
PMID: 18093171 [PubMed-indexed for MEDLINE]
Related citations

637. Yeast adaptation to mancozeb involves the up-regulation of FLR1 under the coordinate control of Yap1, Rpn4, Pdr3, and Yrr1.
Teixeira MC, Dias PJ, Simões T, Sá-Correia I.
PMID: 18086556 [PubMed-indexed for MEDLINE]
Related citations

638. Comparison of the time courses of selective gene expression and dopaminergic depletion induced by MPP+ in MN9D cells.
Wang J, Duhart HM, Xu Z, Patterson TA, Newport GD, Ali SF.
PMID: 18069091 [PubMed-indexed for MEDLINE]
Related citations

639. The experimental models of Parkinson's disease in animals.
Grigor'ian GA, Bazian AS.
PMID: 18064910 [PubMed-indexed for MEDLINE]
Related citations

640. Paraquat neurotoxicity is mediated by a Bak-dependent mechanism.
Fei Q, McCormack AL, Di Monte DA, Ethell DW.
Related citations

641. A cell-permeable peptide inhibitor TAT-JBD reduces the MPP+-induced caspase-9 activation but does not prevent the dopaminergic degeneration in substantia nigra of rats.
Pain S, Barrier L, Degaill J, Milin S, Piriou A, Fauconneau B, Page G.
PMID: 18037221 [PubMed - indexed for MEDLINE]

Related citations

642. Pedicularioside A from Buddleia lindleyana inhibits cell death induced by 1-methyl-4-
phenylpyridinium ions (MPP+) in primary cultures of rat mesencephalic neurons.
Li YY, Lu JH, Li Q, Zhao YY, Pu XP.
PMID: 18035349 [PubMed - indexed for MEDLINE]

Related citations

643. Neurotoxicity of pesticides.
Keifer MC, Firestone J.
PMID: 18032333 [PubMed - indexed for MEDLINE]

Related citations

644. Assessment of the direct and indirect effects of MPP+ and dopamine on the human
proteasome: implications for Parkinson's disease aetiology.
PMID: 18021296 [PubMed - indexed for MEDLINE]

Related citations

645. Induction of microglial reactive oxygen species production by the organochlorinated
pesticide dieldrin.
PMID: 17999924 [PubMed - indexed for MEDLINE]

Related citations

646. Dopamine selectively sensitizes dopaminergic neurons to rotenone-induced apoptosis.
Ahmadi FA, Grammatopoulos TN, Poczobutt AM, Jones SM, Snell LD, Das M, Zawada WM.
PMID: 17992568 [PubMed - indexed for MEDLINE]

Related citations

647. Luteolin protects rat PC12 and C6 cells against MPP+ induced toxicity via an ERK
dependent Keap1-Nrf2-ARE pathway.
Wruck CJ, Claussen M, Fuhrmann G, Römer L, Schulz A, Pufe T, Waetzig V, Peipp M,
Herdegen T, Götz ME.
PMID: 17982879 [PubMed - indexed for MEDLINE]
Related citations

Costa LG, Giordano G, Guizzetti M, Vitalone A.
PMID: 17981626 [PubMed - indexed for MEDLINE]
Related citations

649. Prolonged toxicokinetics and toxicodynamics of paraquat in mouse brain.
Prasad K, Winnik B, Thiruchelvam MJ, Buckley B, Mirochnitchenko O, Richfield EK.
Related citations

650. Neuroprotective effects of (-)-epigallocatechin-3-gallate (EGCG) on paraquat-induced apoptosis in PC12 cells.
Hou RR, Chen JZ, Chen H, Kang XG, Li MG, Wang BR.
PMID: 17936647 [PubMed - indexed for MEDLINE]
Related citations

651. Integrating glutathione metabolism and mitochondrial dysfunction with implications for Parkinson's disease: a dynamic model.
PMID: 17936517 [PubMed - indexed for MEDLINE]
Related citations

652. The bipyridyl herbicide paraquat induces proteasome dysfunction in human neuroblastoma SH-SY5Y cells.
Yang W, Tiffany-Castiglioni E.
PMID: 17934957 [PubMed - indexed for MEDLINE]
Related citations

653. Paraquat: the red herring of Parkinson's disease research.
Miller GW.
Related citations

654. Dopaminergic neurons are preferentially sensitive to long-term rotenone toxicity in primary cell culture.

Related citations

661. Bioenergetic and oxidative effects of free 3-nitrotyrosine in culture: selective vulnerability of dopaminergic neurons and increased sensitivity of non-dopaminergic neurons to dopamine oxidation.
Ma TC, Mihm MJ, Bauer JA, Hoyt KR.
PMID: 17877636 [PubMed-indexed for MEDLINE]
Related citations

662. Risk factors for Parkinson's disease and impaired olfaction in relatives of patients with Parkinson's disease.
Siderowf A, Jennings D, Connolly J, Doty RL, Marek K, Stern MB.
PMID: 17876851 [PubMed-indexed for MEDLINE]
Related citations

663. [Pathogenesis of Parkinson disease].
Takeuchi H, Takahashi R.
PMID: 17853535 [PubMed-indexed for MEDLINE]
Related citations

664. Paraquat induces dopaminergic dysfunction and proteasome impairment in DJ-1-deficient mice.
Yang W, Chen L, Ding Y, Zhuang X, Kang UJ.
Related citations

Edwards TM, Myers JP.
Environ Health Perspect. 2007 Sep;115(9):1264-70. Review.
Related citations

666. Role of lipoamide dehydrogenase and metallothionein on 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity.
Dhanasekaran M, Albano CB, Pellet L, Karuppagounder SS, Uthayathas S, Suppiramaniam V, Brown-Borg H, Ebadi M.
PMID: 17768676 [PubMed-indexed for MEDLINE]
Related citations
667. Mitochondrial complex I inhibitor rotenone-elicited dopamine redistribution from vesicles to cytosol in human dopaminergic SH-SY5Y cells.
Watabe M, Nakaki T.
Related citations

668. Overexpressed alpha-synuclein regulated the nuclear factor-kappaB signal pathway.
PMID: 17712623 [PubMed - indexed for MEDLINE]
Related citations

669. Parkinson's disease and rural environment.
Elbaz A.
PMID: 17708091 [PubMed - indexed for MEDLINE]
Related citations

670. Subchronic intoxication with chlorfenvinphos, an organophosphate insecticide, affects rat brain antioxidative enzymes and glutathione level.
Lukaszewicz-Hussain A.
PMID: 17706853 [PubMed - indexed for MEDLINE]
Related citations

671. Identification of novel proteins affected by rotenone in mitochondria of dopaminergic cells.
Jin J, Davis J, Zhu D, Kashima DT, Leroueil M, Pan C, Montine KS, Zhang J.
Related citations

672. Neuroinflammation in Alzheimer's disease and Parkinson's disease: are microglia pathogenic in either disorder?
Rogers J, Mastroeni D, Leonard B, Joyce J, Grover A.
PMID: 17678964 [PubMed - indexed for MEDLINE]
Related citations

673. Epidemiologic studies of environmental exposures in Parkinson's disease.
Elbaz A, Tranchant C.
PMID: 17673256 [PubMed - indexed for MEDLINE]
Related citations

674. **Cytotoxicity of paraquat in microglial cells: Involvement of PKCdelta- and ERK1/2-dependent NADPH oxidase.**
Miller RL, Sun GY, Sun AY.

Related citations

675. **Melatonin inhibits MPP+-induced caspase-mediated death pathway and DNA fragmentation factor-45 cleavage in SK-N-SH cultured cells.**
Chetsawang J, Govitrapong P, Chetsawang B.
PMID: 17645689 [PubMed - indexed for MEDLINE]

Related citations

676. **Protective effect of Cistanche extracts on MPP+-induced injury of the Parkinson's disease cell model.**
Wang H, Li WW, Cai DF, Yang R.

Related citations

677. **Beclin 1-independent pathway of damage-induced mitophagy and autophagic stress: implications for neurodegeneration and cell death.**
Chu CT, Zhu J, Dagda R.

Related citations

678. **Protective effect of erythropoietin against 1-methyl-4-phenylpyridinium-induced neurodegeneration in PC12 cells.**
Wu Y, Shang Y, Sun SG, Liu RG, Yang WQ.
Neurosci Bull. 2007 May;23(3):156-64.
PMID: 17612594 [PubMed - indexed for MEDLINE]

Related citations

679. **Spare respiratory capacity rather than oxidative stress regulates glutamate excitotoxicity after partial respiratory inhibition of mitochondrial complex I with rotenone.**
Yadava N, Nicholls DG.

Related citations

680. **Iron and paraquat as synergistic environmental risk factors in sporadic Parkinson's disease**
accelerate age-related neurodegeneration.
Peng J, Peng L, Stevenson FF, Doctrow SR, Andersen JK.
Related citations

681. Rotenone selectively kills serotonergic neurons through a microtubule-dependent mechanism.
Ren Y, Feng J.
PMID: 17587308 [PubMed - indexed for MEDLINE]
Related citations

682. Epidemiology of Parkinson's disease.
Khandhar SM, Marks WJ.
PMID: 17586326 [PubMed - indexed for MEDLINE]
Related citations

683. Unique responses to mitochondrial complex I inhibition in tuberoinfundibular dopamine neurons may impart resistance to toxic insult.
Behrouz B, Drolet RE, Sayed ZA, Lookingland KJ, Goudreau JL.
Related citations

684. Astrocytes protect MN9D neuronal cells against rotenone-induced oxidative stress by a glutathione-dependent mechanism.
Cao Q, Wei LR, Lu LL, Zhao CL, Zhao HY, Yang H.
Related citations

685. Is Parkinson's disease an autoimmune disorder of endogenous vasoactive neuropeptides?
Staines DR.
PMID: 17562359 [PubMed - indexed for MEDLINE]
Related citations

686. Rotenone potentiates NMDA currents in substantia nigra dopamine neurons.
Wu YN, Johnson SW.
PMID: 17560718 [PubMed - indexed for MEDLINE]
Related citations

687. **Rejuvenation' protects neurons in mouse models of Parkinson's disease.**
PMID: 17558391 [PubMed - indexed for MEDLINE]

Related citations

688. **Pesticides and metals induced Parkinson's disease: involvement of free radicals and oxidative stress.**
PMID: 17543230 [PubMed - indexed for MEDLINE]

Related citations

689. **Impaired mutagenic activities of MPDP(+) (1-methyl-4-phenyl-2,3-dihydropyridinium) and MPP(+) (1-methyl-4-phenylpyridinium) due to their interactions with methylxanthines.**
PMID: 17533133 [PubMed - indexed for MEDLINE]

Related citations

690. **Identification of differentially expressed proteins in striatum of manebox-and paraquat-induced Parkinson's disease phenotype in mouse.**
PMID: 17532186 [PubMed - indexed for MEDLINE]

Related citations

691. **Functional ryanodine receptors are expressed by human microglia and THP-1 cells: Their possible involvement in modulation of neurotoxicity.**
PMID: 17526017 [PubMed - indexed for MEDLINE]

Related citations

692. **Developmental exposure to pesticides zineb and/or endosulfan renders the nigrostriatal dopamine system more susceptible to these environmental chemicals later in life.**
PMID: 17512982 [PubMed - indexed for MEDLINE]

Related citations

693. **Protective effects of Ginkgo biloba extract on paraquat-induced apoptosis of PC12 cells.**
Kang X, Chen J, Xu Z, Li H, Wang B.

Related citations

694. Erythropoietin prevents PC12 cells from 1-methyl-4-phenylpyridinium ion-induced apoptosis via the Akt/GSK-3beta/caspase-3 mediated signaling pathway.

Related citations

695. Interaction between genes and environment in neurodegenerative diseases.
Elbaz A, Dufouil C, Alpérovitch A.

Related citations

696. Toxic influence of subchronic paraquat administration on dopaminergic neurons in rats.

Related citations

697. Pesticide exposure might be a strong risk factor for Parkinson's disease.
Baldereschi M, Inzitari M, Vanni P, Di Carlo A, Inzitari D.

Related citations

698. Rotenone-induced neurotoxicity of THP-1 cells requires production of reactive oxygen species and activation of phosphatidylinositol 3-kinase.
Hu JH, Zhu XZ.

Related citations

699. Scleroderma-like lesions and Parkinson's disease: possible links with exposure to pesticides.
Stinco G, Piccirillo F, de Francesco V, Patrone P.

Related citations

Related citations

701. Neurodegeneration of mouse nigrostriatal dopaminergic system induced by repeated oral administration of rotenone is prevented by 4-phenylbutyrate, a chemical chaperone.

Related citations

Related citations

Outeiro TF, Grammatopoulos TN, Altmann S, Amore A, Standaert DG, Hyman BT, Kazantsev AG.

Related citations

Vehovszky A, Szabó H, Hiripi L, Elliott CJ, Hernádi L.
PMID: 17439496 [PubMed - indexed for MEDLINE]

Related citations

705. Relationship between autophagy and apoptotic cell death in human neuroblastoma cells treated with paraquat: could autophagy be a "brake" in paraquat-induced apoptotic death?

Related citations
706. Mangiferin protects against 1-methyl-4-phenylpyridinium toxicity mediated by oxidative stress in N2A cells.
Amazzal L, Lapôtre A, Quignon F, Bagrel D.
PMID: 17433543 [PubMed - indexed for MEDLINE]
Related citations

707. 1-methyl-4-phenylpyridinium-induced alterations of glutathione status in immortalized rat dopaminergic neurons.
Drechsel DA, Liang LP, Patel M.
Related citations

708. Biphasic mechanism of the toxicity induced by 1-methyl-4-phenylpyridinium ion (MPP+) as revealed by dynamic changes in glucose metabolism in rat brain slices.
Maruoka N, Murata T, Omata N, Takashima Y, Fujibayashi Y, Wada Y.
PMID: 17391768 [PubMed - indexed for MEDLINE]
Related citations

709. Mitochondria are a major source of paraquat-induced reactive oxygen species production in the brain.
Castello PR, Drechsel DA, Patel M.
Related citations

710. The parkinsonian neurotoxin rotenone activates calpain and caspase-3 leading to motoneuron degeneration in spinal cord of Lewis rats.
Samantaray S, Knaryan VH, Guyton MK, Matzelle DD, Ray SK, Banik NL.
Related citations

711. Antioxidant effect of erythropoietin on 1-methyl-4-phenylpyridinium-induced neurotoxicity in PC12 cells.
Wu Y, Shang Y, Sun S, Liu R.
PMID: 17362920 [PubMed - indexed for MEDLINE]
Related citations

712. The pRb/E2F cell-cycle pathway mediates cell death in Parkinson's disease.
Höglinger GU, Breunig JJ, Depboylu C, Rouaux C, Michel PP, Alvarez-Fischer D,

Related citations

713. Iptakalim alleviates rotenone-induced degeneration of dopaminergic neurons through inhibiting microglia-mediated neuroinflammation.

Related citations

714. The gestational environment and Parkinson's disease: evidence for neurodevelopmental origins of a neurodegenerative disorder.

Related citations

715. Melatonin protects against rotenone-induced oxidative stress in a hemiparkinsonian rat model.

Related citations

716. N-methyltetrahydro-beta-carboline analogs of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxin are oxidized to neurotoxic beta-carbolinium cations by heme peroxidases.

Related citations

717. Interaction of genetic and environmental factors in a Drosophila parkinsonism model.

Related citations

718. Inhibition of cyclin-dependent kinases is neuroprotective in 1-methyl-4-phenylpyridinium-induced apoptosis in neurons.
Inhibition of paraquat-induced autophagy accelerates the apoptotic cell death in neuroblastoma SH-SY5Y cells.

Environmental risk factors for Parkinson’s disease and parkinsonism: the Geoparkinson study.

Does ORP150/HSP12A protect dopaminergic neurons against MPTP/MPP(+) -induced neurotoxicity?
Kitao Y, Matsuyama T, Takano K, Tabata Y, Yoshimoto T, Momoji T, Yamatodani A, Ogawa S, Hori O.
Antioxid Redox Signal. 2007 May;9(5):589-95.
PMID: 17330988 [PubMed - indexed for MEDLINE]

Activation of c-Jun N-terminal protein kinase is a common mechanism underlying paraquat- and rotenone-induced dopaminergic cell apoptosis.
Klintworth H, Newhouse K, Li T, Choi WS, Faigle R, Xia Z.

Exposure to mixtures of endosulfan and zineb induces apoptotic and necrotic cell death in SH-SY5Y neuroblastoma cells, in vitro.
Jia Z, Misra HP.
PMID: 17309119 [PubMed - indexed for MEDLINE]

Dieldrin exposure induces oxidative damage in the mouse nigrostriatal dopamine system.
Hatcher JM, Richardson JR, Guillot TS, McCormack AL, Di Monte DA, Jones DP, Pennell

Related citations

725. **1-Methyl-4-phenylpyridinium induces synaptic dysfunction through a pathway involving caspase and PKCdelta enzymatic activities.**
Serulle Y, Morfini G, Pigino G, Moreira JE, Sugimori M, Brady ST, Llinás RR.

Related citations

726. **1-Methyl-4-phenylpyridinium affects fast axonal transport by activation of caspase and protein kinase C.**

Related citations

727. **Melatonin inhibits maneb-induced aggregation of alpha-synuclein in rat pheochromocytoma cells.**
Ishido M.
PMID: 17286743 [PubMed - indexed for MEDLINE]

Related citations

728. **Rifampicin protects PC12 cells against MPP+-induced apoptosis and inhibits the expression of an alpha-Synuclein multimer.**
Xu J, Wei C, Xu C, Bennett MC, Zhang G, Li F, Tao E.
PMID: 17280646 [PubMed - indexed for MEDLINE]

Related citations

729. **Alpha-synuclein and tyrosine hydroxylase expression in acute rotenone toxicity.**
Luo C, Rajput AH, Akhtar S, Rajput A.
PMID: 17273802 [PubMed - indexed for MEDLINE]

Related citations

730. **Rosiglitazone protects human neuroblastoma SH-SY5Y cells against MPP+ induced cytotoxicity via inhibition of mitochondrial dysfunction and ROS production.**
Jung TW, Lee JY, Shim WS, Kang ES, Kim SK, Ahn CW, Lee HC, Cha BS.
PMID: 17266988 [PubMed - indexed for MEDLINE]
731. **7-nitroindazole protects striatal dopaminergic neurons against MPP+-induced degeneration: an in vivo microdialysis study.**

Di Matteo V, Benigno A, Pierucci M, Giuliani DA, Crescimanno G, Esposito E, Di Giovanni G.

PMID: 17261789 [PubMed - indexed for MEDLINE]

732. **Pesticide exposure exacerbates alpha-synucleinopathy in an A53T transgenic mouse model.**

Norris EH, Uryu K, Leight S, Giasson BI, Trojanowski JQ, Lee VM.

PMID: 17255333 [PubMed - indexed for MEDLINE] [Free PMC Article]

733. **Parkinson's disease and pesticide exposures.**

Dick FD.

PMID: 17242039 [PubMed - indexed for MEDLINE]

734. **Mechanism of toxicity of pesticides acting at complex I: relevance to environmental etiologies of Parkinson's disease.**

Sherer TB, Richardson JR, Testa CM, Seo BB, Panov AV, Yagi T, Matsuno-Yagi A, Miller GW, Greenamyre JT.

PMID: 17244123 [PubMed - indexed for MEDLINE]

735. **SAG protects human neuroblastoma SH-SY5Y cells against 1-methyl-4-phenylpyridinium ion (MPP+)-induced cytotoxicity via the downregulation of ROS generation and JNK signaling.**

Kim SY, Kim MY, Mo JS, Park JW, Park HS.

PMID: 17240529 [PubMed - indexed for MEDLINE]

736. **Nicotine partially protects against paraquat-induced nigrostriatal damage in mice; link to alpha6beta2* nAChRs.**

Khwaja M, McCormack A, McIntosh JM, Di Monte DA, Quik M.

PMID: 17227438 [PubMed - indexed for MEDLINE]
737. **Dopaminergic toxicity of the herbicide atrazine in rat striatal slices.**
Filipov NM, Stewart MA, Carr RL, Sistrunk SC.
PMID: 17218051 [PubMed indexed for MEDLINE] [Free PMC Article](#)
Related citations

738. **Alkyl succinate poisoning.**
Raj M, Subrahmanyam DK, Agrawal A, Sethuraman KR.
PMID: 17214284 [PubMed indexed for MEDLINE]
Related citations

739. **Mitochondrial avid radioprobes. Preparation and evaluation of 7'(Z)-[125I]iodorotenone and 7'(Z)-[125I]iodorotenol.**
VanBrocklin HF, Hanrahan SM, Enas JD, Nandanan E, O'Neil JP.
PMID: 17210467 [PubMed indexed for MEDLINE] [Free PMC Article](#)
Related citations

740. **Herbicide exposure modifies GSTP1 haplotype association to Parkinson onset age: the GenePD Study.**
PMID: 17190945 [PubMed indexed for MEDLINE]
Related citations

741. **Pesticide exposure on southwestern Taiwanese with MnSOD and NQO1 polymorphisms is associated with increased risk of Parkinson's disease.**
Fong CS, Wu RM, Shieh JC, Chao YT, Fu YP, Kuao CL, Cheng CW.
PMID: 17188257 [PubMed indexed for MEDLINE]
Related citations

742. **Chronic rotenone treatment induces behavioral effects but no pathological signs of parkinsonism in mice.**
Richter F, Hamann M, Richter A.
PMID: 17171705 [PubMed indexed for MEDLINE]
Related citations
743. **Mortality among a cohort of banana plantation workers in Costa Rica.**
Hofmann J, Guardado J, Keifer M, Wesseling C.
PMID: 17168219 [PubMed - indexed for MEDLINE]
Related citations

744. **Microglial activation as a priming event leading to paraquat-induced dopaminergic cell degeneration.**
Purisai MG, McCormack AL, Cumine S, Li J, Isla MZ, Di Monte DA.
Related citations

745. **Dopaminergic system modulation, behavioral changes, and oxidative stress after neonatal administration of pyrethroids.**
PMID: 17140720 [PubMed - indexed for MEDLINE]
Related citations

746. **RNA interference-mediated knockdown of alpha-synuclein protects human dopaminergic neuroblastoma cells from MPP(+) toxicity and reduces dopamine transport.**
Fountaine TM, Wade-Martins R.
PMID: 17131421 [PubMed - indexed for MEDLINE]
Related citations

747. **Pesticides and impairment of mitochondrial function in relation with the parkinsonian syndrome.**
Gomez C, Bandez MJ, Navarro A.
PMID: 17127363 [PubMed - indexed for MEDLINE]
Related citations

748. **Mitochondrial toxins and neurodegenerative diseases.**
Ayala A, Venero JL, Cano J, Machado A.
PMID: 17127354 [PubMed - indexed for MEDLINE]
Related citations

749. **Plasma concentration of organochlorine compounds is associated with age and not obesity.**
PMID: 17126879 [PubMed - indexed for MEDLINE]
Related citations
750. Neuroprotective effects of ginsenoside-Rg1 in primary nigral neurons against rotenone toxicity.
Leung KW, Yung KK, Mak NK, Chan YS, Fan TP, Wong RN.
PMID: 17123556 [PubMed - indexed for MEDLINE]
Related citations
Ritz B, Costello S.
Related citations
752. Pesticide exposure and self-reported Parkinson's disease in the agricultural health study.
Related citations
753. An in vitro model of human dopaminergic neurons derived from embryonic stem cells: MPP+ toxicity and GDNF neuroprotection.
Zeng X, Chen J, Deng X, Liu Y, Rao MS, Cadet JL, Freed WJ.
Related citations
754. L-carnitine protects neurons from 1-methyl-4-phenylpyridinium-induced neuronal apoptosis in rat forebrain culture.
PMID: 17084538 [PubMed - indexed for MEDLINE]
Related citations
Feng J.
PMID: 17079513 [PubMed - indexed for MEDLINE]
Related citations
756. **Mitochondrial damage modulates alternative splicing in neuronal cells: implications for neurodegeneration.**
PMID: 17064354 [PubMed - indexed for MEDLINE] Related citations

757. **Carnosol, a component of rosemary (Rosmarinus officinalis L.) protects nigral dopaminergic neuronal cells.**
PMID: 17047462 [PubMed - indexed for MEDLINE] Related citations

758. **Parkinson's disease in relation to pesticide exposure and nuclear encoded mitochondrial complex I gene variants.**
Corder EH, Mellick GD.
PMID: 17047302 [PubMed - indexed for MEDLINE] Free PMC Article Related citations

759. **Occupational titles as risk factors for Parkinson's disease.**
Dick S, Semple S, Dick F, Seaton A.
PMID: 17046990 [PubMed - indexed for MEDLINE] Free Article Related citations

760. **A novel peptide inhibitor targeted to caspase-3 cleavage site of a proapoptotic kinase protein kinase C delta (PKCdelta) protects against dopaminergic neuronal degeneration in Parkinson's disease models.**
PMID: 17045926 [PubMed - indexed for MEDLINE] Related citations

761. **Chemical genomic profiling for identifying intracellular targets of toxicants producing Parkinson's disease.**
Doostzadeh J, Davis RW, Giaever GN, Nislow C, Langston JW.
PMID: 17043098 [PubMed - indexed for MEDLINE] Free Article Related citations

762. **Differential effect of nerve growth factor on dopaminergic neurotoxin-induced apoptosis.**

Related citations

763. **Divergent mechanisms of paraquat, MPP+, and rotenone toxicity: oxidation of thioredoxin and caspase-3 activation.**

Related citations

764. **Controversies on new animal models of Parkinson's disease pro and con: the rotenone model of Parkinson's disease (PD).**

Related citations

765. **The rotenone model of parkinsonism--the five years inspection.**

Related citations

766. **Unique cytochromes P450 in human brain: implication in disease pathogenesis.**

Related citations

767. **CYP450, genetics and Parkinson's disease: gene x environment interactions hold the key.**

Related citations

768. **Nongenetic causes of Parkinson's disease.**

Related citations

769. **Mitochondria mass is low in mouse substantia nigra dopamine neurons: implications for**
Parkinson's disease.
Liang CL, Wang TT, Luby-Phelps K, German DC.
PMID: 17010972 [PubMed - indexed for MEDLINE]
Related citations

770. Inhibition of aldehyde detoxification in CNS mitochondria by fungicides.
Leiphon LJ, Picklo MJ Sr.
PMID: 17010440 [PubMed - indexed for MEDLINE]
Related citations

771. RTP801 is elevated in Parkinson brain substantia nigral neurons and mediates death in cellular models of Parkinson's disease by a mechanism involving mammalian target of rapamycin inactivation.
Malagelada C, Ryu EJ, Biswas SC, Jackson-Lewis V, Greene LA.
Related citations

772. Dopamine D2 agonists, bromocriptine and quinpirole, increase MPP+ -induced toxicity in PC12 cells.
Chiasson K, Daoust B, Levesque D, Martinoli MG.
PMID: 17000468 [PubMed - indexed for MEDLINE]
Related citations

773. The neurotoxin, MPP+, induces hyperphosphorylation of Tau, in the presence of alpha-Synuclein, in SH-SY5Y neuroblastoma cells.
Duka T, Sidhu A.
PMID: 17000465 [PubMed - indexed for MEDLINE]
Related citations

774. VIP is a transcriptional target of Nurr1 in dopaminergic cells.
Luo Y, Henricksen LA, Giuliano RE, Prifti L, Callahan LM, Federoff HJ.
PMID: 16999955 [PubMed - indexed for MEDLINE]
Related citations

775. Neuroprotective effects of the stable nitroxide compound Tempol on 1-methyl-4-phenylpyridinium ion-induced neurotoxicity in the Nerve Growth Factor-differentiated model of pheochromocytoma PC12 cells.
Lipman T, Tabakman R, Lazarovic P.
776. Induction of parkin expression in the presence of oxidative stress.
 Yang YX, Muqit MM, Latchman DS.
 PMID: 16987221 [PubMed - indexed for MEDLINE]

777. 5' and 3' region variability in the dopamine transporter gene (SLC6A3), pesticide exposure and Parkinson's disease risk: a hypothesis-generating study.

778. PEP-1-SOD fusion protein efficiently protects against paraquat-induced dopaminergic neuron damage in a Parkinson disease mouse model.
 PMID: 16962931 [PubMed - indexed for MEDLINE]

779. Environmental determinants of Parkinson's disease.
 Wright JM, Keller-Byrne J.
 PMID: 16961006 [PubMed - indexed for MEDLINE]

780. Distinct effects of atypical 1,4-dihydropyridines on 1-methyl-4-phenylpyridinium-induced toxicity.
 PMID: 16927412 [PubMed - indexed for MEDLINE]

 Imamura K, Takeshima T, Kashiwaya Y, Nakaso K, Nakashima K.
PMID: 16917840 [PubMed - indexed for MEDLINE]
Related citations

Braungart E, Gerlach M, Riederer P, Baumeister R, Hoener MC.
PMID: 16908987 [PubMed - indexed for MEDLINE]
Related citations

783. Mutational analysis of DJ-1 in Drosophila implicates functional inactivation by oxidative damage and aging.
Meulener MC, Xu K, Thomson L, Ischiropoulos H, Bonini NM.
Related citations

784. Temporal effects of paraquat/maneb on microglial activation and dopamine neuronal loss in older rats.
Saint-Pierre M, Tremblay ME, Sik A, Gross RE, Cicchetti F.
PMID: 16893418 [PubMed - indexed for MEDLINE]
Related citations

785. Acute neurotoxic effects of mancozeb and maneb in mesencephalic neuronal cultures are associated with mitochondrial dysfunction.
Domico LM, Zeevalk GD, Bernard LP, Cooper KR.
PMID: 16889834 [PubMed - indexed for MEDLINE]
Related citations

786. Neurotrophic factors stabilize microtubules and protect against rotenone toxicity on dopaminergic neurons.
Jiang Q, Yan Z, Feng J.
Related citations

787. The role of tissue transglutaminase in 1-methyl-4-phenylpyridinium (MPP+)-induced toxicity in differentiated human SH-SY5Y neuroblastoma cells.
Beck KE, De Girolamo LA, Griffin M, Billett EE.
788. Geographic isolates of atypical Parkinsonism and tauopathy in the tropics: possible synergy of neurotoxins.
 Caparros-Lefebvre D, Steele J, Kotake Y, Ohta S.
 PMID: 16874753 [PubMed - indexed for MEDLINE]
 Related citations

789. Cytotoxicity of chloral-derived beta-carbolines is not specific towards neuronal nor dopaminergic cells.
 Storch A, Hwang YI, Bringmann G, Feineis D, Ott S, Brückner R, Schwarz J.
 PMID: 16868795 [PubMed - indexed for MEDLINE]
 Related citations

790. Identification of novel proteins associated with both alpha-synuclein and DJ-1.
 Related citations

791. Endotoxin, a possible agent in the causation of Parkinson's disease.
 Lange JH, Buja A, Mastrangelo G.
 PMID: 16832216 [PubMed - indexed for MEDLINE]
 Related citations

792. Rats with unilateral median forebrain bundle, but not striatal or nigral, lesions by the neurotoxins MPP+ or rotenone display differential sensitivity to amphetamine and apomorphine.
 PMID: 16820197 [PubMed - indexed for MEDLINE]
 Related citations

793. Adaptive acetylcholinesterase splicing patterns attenuate 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced Parkinsonism in mice.
 Ben-Shaul Y, Benmoyal-Segal L, Ben-Ari S, Bergman H, Soreq H.
 PMID: 16819980 [PubMed - indexed for MEDLINE]
 Related citations
794. **Monocyte-mediated rotenone neurotoxicity towards human neuroblastoma SH-SY5Y: role of mitogen-activated protein kinases.**
Zhao FL, Hu JH, Zhu XZ.
PMID: 16819171 [PubMed - indexed for MEDLINE] Free Article Related citations

795. **Paraquat exposure as an etiological factor of Parkinson's disease.**
Dinis-Oliveira RJ, Remião F, Carmo H, Duarte JA, Navarro AS, Bastos ML, Carvalho F.
PMID: 16815551 [PubMed - indexed for MEDLINE] Related citations

796. **Developmental exposure to the pesticide dieldrin alters the dopamine system and increases neurotoxicity in an animal model of Parkinson's disease.**
Richardson JR, Caudle WM, Wang M, Dean ED, Pennell KD, Miller GW.
PMID: 16809432 [PubMed - indexed for MEDLINE] Free Article Related citations

797. **Protocatechuc acid suppresses MPP+ -induced mitochondrial dysfunction and apoptotic cell death in PC12 cells.**
Guan S, Jiang B, Bao YM, An LJ.
PMID: 16806628 [PubMed - indexed for MEDLINE] Related citations

798. **Enhancement of tyrosine hydroxylase expression and activity by Trypanosoma cruzi parasite-derived neurotrophic factor.**
Chuenkova MV, Pereiraperrin M.
PMID: 16806115 [PubMed - indexed for MEDLINE] Related citations

799. **Gene-environment interactions in sporadic Parkinson's disease.**
Benmoyal-Segal L, Soreq H.
PMID: 16805780 [PubMed - indexed for MEDLINE] Related citations

800. **Pesticide exposure and risk for Parkinson's disease.**
Ascherio A, Chen H, Weisskopf MG, O'Reilly E, McCullough ML, Calle EE, Schwarzschild
Degeneration of dopaminergic mesocortical neurons and activation of compensatory processes induced by a long-term paraquat administration in rats: implications for Parkinson's disease.

PMID: 16797138 [PubMed - indexed for MEDLINE]

Chemical exposures and Parkinson's disease: a population-based case-control study.

PMID: 16773614 [PubMed - indexed for MEDLINE]

Transduced Tat-alpha-synuclein protects against oxidative stress in vitro and in vivo.

Potentiating effect of the ATP-sensitive potassium channel blocker glibenclamide
on complex I inhibitor neurotoxicity in vitro and in vivo.
Kou J, Klorig DC, Bloomquist JR.
PMID: 16725203 [PubMed - indexed for MEDLINE]

Related citations

Soderstrom K, O'Malley J, Steece-Collier K, Kordower JH.
PMID: 16719060 [PubMed - indexed for MEDLINE]

Related citations

806. Progressive dopamine neuron loss in Parkinson's disease: the multiple hit hypothesis.
Carvey PM, Punati A, Newman MB.
PMID: 16719059 [PubMed - indexed for MEDLINE]

Related citations

Related citations

808. Heat shock proteins reduce alpha-
synuclein aggregation induced by MPP+ in SK-N-SH cells.
Fan GH, Zhou HY, Yang H, Chen SD.
PMID: 16678164 [PubMed - indexed for MEDLINE]
Related citations

809. Reactive microgliosis participates in MPP+-induced dopaminergic neurodegeneration: role of 67 kDa laminin receptor.
Wang T, Zhang W, Pei Z, Block M, Wilson B, Reece JM, Miller DS, Hong JS.
Related citations

810. Neurotoxic effect of maneb in rats as studied by neurochemical and immunohistochemical parameters.
Nielsen BS, Larsen EH, Ladefoged O, Lam HR.
PMID: 21783668 [PubMed]
Related citations

811. Basic fibroblast growth factor protects against rotenone-induced dopaminergic cell death through activation of extracellular signal-regulated kinases 1/2 and phosphatidylinositol-3 kinase pathways.
Hsuan SL, Klintworth HM, Xia Z.
Related citations

812. Inhibitory effects of pesticides on
proteasome activity: implication in Parkinson's disease.

Related citations

813. Activation of group III metabotropic glutamate receptors attenuates rotenone toxicity on dopaminergic neurons through a microtubule-dependent mechanism.

Related citations

Related citations

815. Organochlorine pesticide exposure in essential tremor: a case-control study using biological and occupational exposure assessments.

Related citations

816. Proteasomal inhibition hypersensitizes
differentiated neuroblastoma cells to oxidative damage.
Lev N, Melamed E, Offen D.
PMID: 16584840 [PubMed - indexed for MEDLINE]
Related citations

817. Rotenone induces cell death in primary dopaminergic culture by increasing ROS production and inhibiting mitochondrial respiration.
Radad K, Rausch WD, Gille G.
PMID: 16580092 [PubMed - indexed for MEDLINE]
Related citations

818. The potentiating effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) on paraquat-induced neurochemical and behavioral changes in mice.
PMID: 16580056 [PubMed - indexed for MEDLINE]
Related citations

819. Chromatographic analysis of dopamine metabolism in a Parkinsonian model.
Baranyi M, Milusheva E, Vizi ES, Sperlágh B.
PMID: 16580006 [PubMed - indexed for MEDLINE]
Related citations

820. Identification of rotenone-induced
modifications in alpha-synuclein using affinity pull-down and tandem mass spectrometry.
Mirzaei H, Schieler JL, Rochet JC, Regnier F.
PMID: 16579629 [PubMed - indexed for MEDLINE]
Related citations
821. Susceptibility to rotenone is increased in neurons from parkin null mice and is reduced by minocycline.
Casarejos MJ, Menéndez J, Solano RM, Rodríguez-Navarro JA, García de Yébenes J, Mena MA.
PMID: 16573651 [PubMed - indexed for MEDLINE]
Related citations
Related citations
823. Adiponectin protects human neuroblastoma SH-SY5Y cells against MPP+-induced cytotoxicity.
Jung TW, Lee JY, Shim WS, Kang ES, Kim JS, Ahn CW, Lee HC, Cha BS.
PMID: 16554029 [PubMed - indexed for MEDLINE]
Related citations
824. Curcumin protects PC12 cells against 1-
methyl-4-phenylpyridinium ion-induced apoptosis by bcl-2-mitochondria-ROS-iNOS pathway.
Chen J, Tang XQ, Zhi JL, Cui Y, Yu HM, Tang EH, Sun SN, Feng JQ, Chen PX.
PMID: 16547587 [PubMed - indexed for MEDLINE]

Related citations
825. Rat model of Parkinson's disease: chronic central delivery of 1-methyl-4-phenylpyridinium (MPP+).
Yazdani U, German DC, Liang CL, Manzino L, Sonsalla PK, Zeevalk GD.
PMID: 16546169 [PubMed - indexed for MEDLINE]

Related citations
826. In vivo complementation of complex I by the yeast Ndi1 enzyme. Possible application for treatment of Parkinson disease.
Seo BB, Nakamaru-Ogiso E, Flotte TR, Matsuno-Yagi A, Yagi T.
Related citations
827. Parkin protects against mitochondrial toxins and beta-amyloid accumulation in skeletal muscle cells.
Rosen KM, Veereshwarayya V, Moussa CE, Fu Q, Goldberg MS, Schlossmacher MG, Shen J, Querfurth HW.
PMID: 16517603 [PubMed - indexed for MEDLINE] Free Article
Related citations
Patel S, Singh V, Kumar A, Gupta YK, Singh MP.
Epub 2006 Feb 28.
PMID: 16510128 [PubMed - indexed for MEDLINE]

Related citations

829. Inhibition of the cdk5/p25 fragment formation may explain the antiapoptotic effects of melatonin in an experimental model of Parkinson's disease.
Alvira D, Tajes M, Verdaguer E, Acuña-Castroviejo D, Folch J, Camins A, Pallas M.
PMID: 16499562 [PubMed - indexed for MEDLINE]

Related citations

830. L-deprenyl protects against rotenone-induced, oxidative stress-mediated dopaminergic neurodegeneration in rats.
Saravanan KS, Sindhu KM, Senthilkumar KS, Mohanakumar KP.
Epub 2006 Feb 21.
PMID: 16490285 [PubMed - indexed for MEDLINE]

Related citations

831. Enhanced sensitivity of dopaminergic neurons to rotenone-induced toxicity with aging.
Phinney AL, Andringa G, Bol JG, Wolters ECh, van Muiswinkel FL, van Dam AM, Drukarch B.
832. **6-Hydroxydopamine but not 1-methyl-4-phenylpyridinium abolishes alpha-synuclein anti-apoptotic phenotype by inhibiting its proteasomal degradation and by promoting its aggregation.**

PMID: 16464850 [PubMed-indexed for MEDLINE] [Free Article]

833. **Nitric oxide and MPP+-induced hydroxyl radical generation.**

Obata T.

J Neural Transm. 2006 Sep;113(9):1131-44. Epub 2006 Feb 6. Review.
PMID: 16463115 [PubMed-indexed for MEDLINE]

834. **Pesticides and Parkinson's disease--is there a link?**

Brown TP, Rumsby PC, Capleton AC, Rushton L, Levy LS.

Environ Health Perspect. 2006 Feb;114(2):156-64. Review.
PMID: 16451848 [PubMed-indexed for MEDLINE] [Free PMC Article]

835. **Spatial test for agricultural pesticide "blow-in" effect on prevalence of Parkinson's disease.**

PMID: 16449758 [PubMed - indexed for MEDLINE]
Related citations

Charles LE, Burchfiel CM, Fekedulegn D, Kashon ML, Ross GW, Petrovitch H, Sanderson WT.
PMID: 16439859 [PubMed - indexed for MEDLINE]
Related citations

837. **Intersecting pathways to neurodegeneration in Parkinson's disease: effects of the pesticide rotenone on DJ-1, alpha-synuclein, and the ubiquitin-proteasome system.**
PMID: 16439141 [PubMed - indexed for MEDLINE]
Related citations

838. **Early induction of calpains in rotenone-mediated neuronal apoptosis.**
Chen MJ, Yap YW, Choy MS, Koh CH, Seet SJ, Duan W, Whiteman M, Cheung NS.
PMID: 16412576 [PubMed - indexed for MEDLINE]
Related citations

839. **Toxin-induced models of Parkinson's**
disease.

Related citations

840. Creatine supplementation improves dopaminergic cell survival and protects against MPP+ toxicity in an organotypic tissue culture system.

Related citations

841. [The role of environmental factors in Parkinson's disease may depend on disease onset age].

Related citations

842. 1-methyl-4-phenylpyridinium neurotoxicity is attenuated by adenoviral gene transfer of human Cu/Zn superoxide dismutase.

Related citations

843. Tetrahydrobiopterin causes mitochondrial dysfunction in dopaminergic cells: implications for Parkinson's disease.
Choi HJ, Lee SY, Cho Y, No H, Kim SW, Hwang O.
PMID: 16343695 [PubMed - indexed for MEDLINE]
Related citations

844. Acetylsalicylic acid and acetaminophen protect against MPP+-induced mitochondrial damage and superoxide anion generation.
Maharaj H, Maharaj DS, Daya S.
PMID: 16318861 [PubMed - indexed for MEDLINE]
Related citations

845. Valproic acid-mediated Hsp70 induction and anti-apoptotic neuroprotection in SH-SY5Y cells.
Pan T, Li X, Xie W, Jankovic J, Le W.
PMID: 16313906 [PubMed - indexed for MEDLINE]
Related citations

846. Epidemiological evidence on multiple system atrophy.
Vanacore N.
PMID: 16284906 [PubMed - indexed for MEDLINE]
Related citations

847. Stress-induced alterations in parkin solubility promote parkin aggregation and compromise parkin's protective function.
The bipyridyl herbicide paraquat produces oxidative stress-mediated toxicity in human neuroblastoma SH-SY5Y cells: relevance to the dopaminergic pathogenesis.
Yang W, Tiffany-Castiglioni E.
PMID: 16263688 [PubMed - indexed for MEDLINE]
Related citations

The regulation of rotenone-induced inflammatory factor production by ATP-sensitive potassium channel expressed in BV-2 cells.
PMID: 16257489 [PubMed - indexed for MEDLINE]
Related citations

Parkinson's disease in diphenyl-exposed workers--a causal association?
Wastensson G, Hagberg S, Andersson E, Johnels B, Barregård L.
PMID: 16256410 [PubMed - indexed for MEDLINE]
Related citations

Synergistic effect of alpha-dihydroergocryptine and L-dopa or dopamine on dopaminergic neurons in primary culture.
Gille G, Radad K, Reichmann H, Rausch
Related citations

852. Partial mitochondrial inhibition causes striatal dopamine release suppression and medium spiny neuron depolarization via H2O2 elevation, not ATP depletion.
Bao L, Avshalumov MV, Rice ME.

853. Rotenone model of Parkinson disease: multiple brain mitochondria dysfunctions after short term systemic rotenone intoxication.

854. Systemic exposure to paraquat and maneb models early Parkinson's disease in young adult rats.
Cicchetti F, Lapointe N, Roberge-Tremblay A, Saint-Pierre M, Jimenez L, Ficke BW, Gross RE.
PMID: 16242641 [PubMed - indexed for MEDLINE]

855. Similar patterns of mitochondrial vulnerability and rescue induced by genetic modification of alpha-synuclein, parkin, and DJ-1 in Caenorhabditis
elegans.
Related citations
856. Heat shock proteins reduce toxicity of 1-methyl-4-phenylpyridinium ion in SK-N-SH cells.
Fan GH, Qi C, Chen SD.
Related citations
857. Protocatechuic acid from Alpinia oxyphylla against MPP+-induced neurotoxicity in PC12 cells.
An LJ, Guan S, Shi GF, Bao YM, Duan YL, Jiang B.
Related citations
858. The mitochondrial complex I inhibitor rotenone triggers a cerebral tauopathy.
Related citations
859. Evaluation of epidemiologic and animal
data associating pesticides with Parkinson's disease.
Li AA, Mink PJ, McIntosh LJ, Teta MJ, Finley B.
PMID: 16217247 [PubMed - indexed for MEDLINE]
Related citations

860. Heat shock proteins protect both MPP(+) and paraquat neurotoxicity.
Donaire V, Niso M, Morán JM, García L, González-Polo RA, Soler G, Fuentes JM.
PMID: 16216701 [PubMed - indexed for MEDLINE]
Related citations

861. Neuroprotective effects of Polygonum multiflorum on nigrostriatal dopaminergic degeneration induced by paraquat and maneb in mice.
Li X, Matsumoto K, Murakami Y, Tezuka Y, Wu Y, Kadota S.
PMID: 16214209 [PubMed - indexed for MEDLINE]
Related citations

862. Sepiapterin attenuates 1-methyl-4-phenylpyridinium-induced apoptosis in neuroblastoma cells transfected with neuronal NOS: role of tetrahydrobiopterin, nitric oxide, and proteasome activation.
Shang T, Kotamraju S, Zhao H, Kalivendi SV, Hillard CJ, Kalyanaraman B.
PMID: 16198233 [PubMed - indexed for MEDLINE]
863. **A slowly developing dysfunction of dopaminergic nigrostriatal neurons induced by long-term paraquat administration in rats: an animal model of preclinical stages of Parkinson's disease?**

PMID: 16190885 [PubMed - indexed for MEDLINE]

864. **Mechanism of 1-methyl-4-phenylpyridinium-induced dopamine release from PC12 cells.**

Chagkutip J, Govitrapong P, Klongpanichpak S, Ebadi M.

PMID: 16176067 [PubMed - indexed for MEDLINE]

865. **Paraquat induces selective dopaminergic nigrostriatal degeneration in aging C57BL/6 mice.**

Li X, Yin J, Cheng CM, Sun JL, Li Z, Wu YL.

866. **Apoptosis inducing factor mediates caspase-independent 1-methyl-4-phenylpyridinium toxicity in dopaminergic cells.**

867. **Effect of metals on herbicides-alpha-synuclein association: a possible factor in neurodegenerative disease studied by capillary electrophoresis.**
André C, Truong TT, Robert JF, Guillaume YC.
Electrophoresis. 2005 Sep;26(17):3256-64.
PMID: 16143978 [PubMed - indexed for MEDLINE]

868. **Paraquat neurotoxicity is distinct from that of MPTP and rotenone.**
Richardson JR, Quan Y, Sherer TB, Greenamyre JT, Miller GW.

869. **Developmental pesticide models of the Parkinson disease phenotype.**
Cory-Slechta DA, Thiruchelvam M, Barlow BK, Richfield EK.
Environ Health Perspect. 2005 Sep;113(9):1263-70.

870. **The role of early life environmental risk factors in Parkinson disease: what is the evidence?**
Logroscino G.
Environ Health Perspect. 2005 Sep;113(9):1234-8. Review.
871. **Roles of Drosophila DJ-1 in survival of dopaminergic neurons and oxidative stress.**

Menzies FM, Yenisetti SC, Min KT.
PMID: 16139214 [PubMed - indexed for MEDLINE]

872. **Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson's disease.**

PMID: 16139213 [PubMed - indexed for MEDLINE]

873. **Proliferation of microglial cells induced by 1-methyl-4-phenylpyridinium in mesencephalic cultures results from an astrocyte-dependent mechanism: role of granulocyte macrophage colony-stimulating factor.**

Henze C, Hartmann A, Lescot T, Hirsch EC, Michel PP.
PMID: 16135085 [PubMed - indexed for MEDLINE]

874. **Effect of overexpression of wild-type or mutant parkin on the cellular response induced by toxic insults.**

Hyun DH, Lee M, Halliwell B, Jenner P.
PMID: 16130151 [PubMed - indexed for MEDLINE]
875. **Promethazine protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity.**
Cleren C, Starkov AA, Calingasan NY, Lorenzo BJ, Chen J, Beal MF.
PMID: 16126396 [PubMed - indexed for MEDLINE]
Related citations

876. **A delivery strategy for rotenone microspheres in an animal model of Parkinson's disease.**
PMID: 16118017 [PubMed - indexed for MEDLINE]
Related citations

877. **Rotenone and CCCP inhibit tyrosine hydroxylation in rat striatal tissue slices.**
Hirata Y, Nagatsu T.
PMID: 16115719 [PubMed - indexed for MEDLINE]
Related citations

878. **Protective effect of melatonin on rotenone plus Ca2+-induced mitochondrial oxidative stress and PC12 cell death.**
Sousa SC, Castilho RF.
PMID: 16115015 [PubMed - indexed for MEDLINE]
Related citations

879. **Selective alterations of transcription factors in MPP+-induced neurotoxicity in PC12 cells.**

Related citations

880. Perinatal heptachlor exposure increases expression of presynaptic dopaminergic markers in mouse striatum.

Related citations

881. Dieldrin-induced neurotoxicity: relevance to Parkinson's disease pathogenesis.

Related citations

882. The parkinsonism producing neurotoxin MPP+ affects microtubule dynamics by acting as a destabilising factor.

Related citations

883. Increased nuclear factor-erythroid 2 p45-related factor 2 activity protects SH-SY5Y cells against oxidative damage.
PMID: 16092930 [PubMed - indexed for MEDLINE]
Related citations

Related citations

PMID: 16023584 [PubMed - indexed for MEDLINE]
Related citations

PMID: 16022861 [PubMed - indexed for MEDLINE]
Related citations

PMID: 16008163 [PubMed - indexed for MEDLINE]
Related citations

888. Pesticides and Parkinson's disease. Wu YR.
PMID: 16008160 [PubMed - indexed for MEDLINE]

Related citations

889. Increased sensitivity to MPTP in human alpha-synuclein A30P transgenic mice.
PMID: 16006012 [PubMed - indexed for MEDLINE]

Related citations

890. Pyrethroid pesticide-induced alterations in dopamine transporter function.
Elwan MA, Richardson JR, Guillot TS, Caudle WM, Miller GW.
PMID: 16005927 [PubMed - indexed for MEDLINE]

Related citations

891. PACAP protects neuronal differentiated PC12 cells against the neurotoxicity induced by a mitochondrial complex I inhibitor, rotenone.
Wang G, Qi C, Fan GH, Zhou HY, Chen SD.

Related citations

892. ATP-sensitive potassium channel opener iptakalim protected against the cytotoxicity of MPP+ on SH-SY5Y cells by decreasing extracellular glutamate level.
Hu LF, Wang S, Shi XR, Yao HH, Sun
YH, Ding JH, Liu SY, Hu G.
Epub 2005 Jul 5.
PMID: 16000145 [PubMed - indexed for MEDLINE]
Related citations

893. Dopaminergic neurotoxins require excitotoxic stimulation in organotypic cultures.
Kress GJ, Reynolds IJ.
Epub 2005 Jun 29.
PMID: 15996475 [PubMed - indexed for MEDLINE]
Related citations

894. Test-retest repeatability of self-reported environmental exposures in Parkinson's disease cases and healthy controls.
Gartner CE, Battistutta D, Dunne MP, Silburn PA, Mellick GD.
PMID: 15994111 [PubMed - indexed for MEDLINE]
Related citations

895. Behavioral differences in a rotenone-induced hemiparkinsonian rat model developed following intranigral or median forebrain bundle infusion.
Sindhu KM, Saravanan KS, Mohanakumar KP.
Brain Res. 2005 Jul 27;1051(1-2):25-34.
PMID: 15992782 [PubMed - indexed for MEDLINE]
Related citations

896. The emerging utility of animal models of chronic neurodegenerative diseases.
Kahle PJ, Haass C.
897. **Dieldrin induces ubiquitin-proteasome dysfunction in alpha-synuclein overexpressing dopaminergic neuronal cells and enhances susceptibility to apoptotic cell death.**

Sun F, Anantharam V, Latchoumycandane C, Kanthasamy A, Kanthasamy AG.
PMID: 15987830 [PubMed-indexed for MEDLINE] [Free Article]

898. **Investigating the receptor-independent neuroprotective mechanisms of nicotine in mitochondria.**

Xie YX, Bezard E, Zhao BL.
PMID: 15985439 [PubMed-indexed for MEDLINE] [Free Article]

899. **Wild-type alpha-synuclein interacts with pro-apoptotic proteins PKCdelta and BAD to protect dopaminergic neuronal cells against MPP+-induced apoptotic cell death.**

Kaul S, Anantharam V, Kanthasamy A, Kanthasamy AG.
Brain Res Mol Brain Res. 2005 Sep 13;139(1):137-52.
PMID: 15978696 [PubMed-indexed for MEDLINE] [Related citations]

900. **Microglial activation induced by neurodegeneration: a proteomic analysis.**

Mol Cell Proteomics. 2005
Related citations

901. Characterization of the monomethylarsonate reductase and dehydroascorbate reductase activities of Omega class glutathione transferase variants: implications for arsenic metabolism and the age-at-onset of Alzheimer's and Parkinson's diseases.
Schmuck EM, Board PG, Whitbread AK, Tetlow N, Cavanaugh JA, Blackburn AC, Masoumi A.
PMID: 15970797 [PubMed - indexed for MEDLINE]

Related citations

902. Forcing nonamyloidogenic beta-synuclein to fibrillate.
Yamin G, Munishkina LA, Karymov MA, Lyubchenko YL, Uversky VN, Fink AL.
PMID: 15966733 [PubMed - indexed for MEDLINE]

Related citations

903. The role of phospholipid methylation in 1-methyl-4-phenyl-pyridinium ion (MPP+)-induced neurotoxicity in PC12 cells.
Lee ES, Chen H, Charlton CG, Soliman KF.
PMID: 15950286 [PubMed - indexed for MEDLINE]

Related citations

904. Superoxide dismutase/catalase mimetics are neuroprotective against selective
paraquat-mediated dopaminergic neuron death in the substantial nigra: implications for Parkinson disease.
Related citations

905. BimEL up-regulation potentiates AIF translocation and cell death in response to MPTP.
Related citations

906. Potential occupational risks for neurodegenerative diseases.
Related citations

907. Acute intranigral infusion of rotenone in rats causes progressive biochemical lesions in the striatum similar to Parkinson's disease.
Related citations

908. Mitochondrial membrane depolarization and the selective death of dopaminergic
neurons by rotenone: protective effect of coenzyme Q10.
Moon Y, Lee KH, Park JH, Geum D, Kim K.
PMID: 15934940 [PubMed - indexed for MEDLINE]

Related citations

909. Dopaminergic neurotoxicity by 6-OHDA and MPP+: differential requirement for neuronal cyclooxygenase activity.
Carrasco E, Casper D, Werner P.
PMID: 15931668 [PubMed - indexed for MEDLINE]

Related citations

910. Activation of mitochondrial ATP-sensitive potassium channels improves rotenone-related motor and neurochemical alterations in rats.
PMID: 15927086 [PubMed - indexed for MEDLINE]

Related citations

911. Increased sensitivity of striatal dopamine release to H2O2 upon chronic rotenone treatment.
Milusheva E, Baranyi M, Kittel A, Sperlágh B, Vizi ES.
PMID: 15925285 [PubMed - indexed for MEDLINE]

Related citations

912. Rotenone induces aggregation of gamma-tubulin protein and subsequent disorganization of the centrosome:
relevance to formation of inclusion bodies and neurodegeneration.
Diaz-Corrales FJ, Asanuma M, Miyazaki I, Miyoshi K, Ogawa N.
PMID: 15893636 [PubMed-indexed for MEDLINE]
Related citations

913. Effects of creatine treatment on the survival of dopaminergic neurons in cultured fetal ventral mesencephalic tissue.
PMID: 15890457 [PubMed-indexed for MEDLINE]
Related citations

914. Energy status, ubiquitin proteasomal function, and oxidative stress during chronic and acute complex I inhibition with rotenone in mesencephalic cultures.
Zeevalk GD, Bernard LP.
PMID: 15890011 [PubMed-indexed for MEDLINE]
Related citations

915. The role of microglia in paraquat-induced dopaminergic neurotoxicity.
Wu XF, Block ML, Zhang W, Qin L, Wilson B, Zhang WQ, Veronesi B, Hong JS.
PMID: 15890010 [PubMed-indexed for MEDLINE]
Related citations

916. Toxicity of redox cycling pesticides in primary mesencephalic cultures.

921. **Sleep disturbances in the rotenone animal model of Parkinson disease.**
García-García F, Ponce S, Brown R, Cussen V, Krueger JM.
Brain Res. 2005 May 3;1042(2):160-8.
PMID: 15854587 [PubMed-indexed for MEDLINE]

922. **MPP+-induced COX-2 activation and subsequent dopaminergic neurodegeneration.**

923. **Parkinson's disease risk factors: genetic, environmental, or both?**
Allam MF, Del Castillo AS, Navajas RF.
PMID: 15829184 [PubMed-indexed for MEDLINE]

924. **Overexpression of superoxide dismutase or glutathione peroxidase protects against the paraquat + maneb-induced Parkinson disease phenotype.**
Thiruchelvam M, Prokopenko O, Cory-Slechta DA, Buckley B, Mirochnitchenko O.
PMID: 15824117 [PubMed-indexed for
925. **Systematic administration of iptakalim, an ATP-sensitive potassium channel opener, prevents rotenone-induced motor and neurochemical alterations in rats.**

926. **Rotenone induces oxidative stress and dopaminergic neuron damage in organotypic substantia nigra cultures.**

Testa CM, Sherer TB, Greenamyre JT.

927. **Consumption of milk and calcium in midlife and the future risk of Parkinson disease.**

Park M, Ross GW, Petrovitch H, White LR, Masaki KH, Nelson JS, Tanner CM, Curb JD, Blanchette PL, Abbott RD.

928. **Developmental pesticide exposures and the Parkinson's disease phenotype.**

Cory-Slechta DA, Thiruchelvam M, Richfield EK, Barlow BK, Brooks AI.

Related citations

929. Parkinson's disease among Inuit in Greenland: organochlorines as risk factors.
Koldkjaer OG, Wermuth L, Bjerregaard P.
PMID: 15736686 [PubMed - indexed for MEDLINE]

Related citations

930. Possible involvement of Ca2+ signaling in rotenone-induced apoptosis in human neuroblastoma SH-SY5Y cells.
Wang XJ, Xu JX.
PMID: 15698934 [PubMed - indexed for MEDLINE]

Related citations

931. Neuroprotective effect of 1-methyl-1,2,3,4-tetrahydroisoquinoline on cultured rat mesencephalic neurons in the presence or absence of various neurotoxins.
Brain Res. 2005 Feb 8;1033(2):143-50.
PMID: 15694918 [PubMed - indexed for MEDLINE]

Related citations

932. Cytochrome c release from rat brain mitochondria is proportional to the mitochondrial functional deficit: implications for apoptosis and neurodegenerative disease.
Clayton R, Clark JB, Sharpe M.
PMID: 15686486 [PubMed - indexed for MEDLINE]

Related citations
933. **Salvianic acid A protects human neuroblastoma SH-SY5Y cells against MPP+-induced cytotoxicity.**
Wang XJ, Xu JX.
PMID: 15681030 [PubMed - indexed for MEDLINE]
Related citations

934. **Parkinson disease studies yield insights.**
Friedrich MJ.
PMID: 15671413 [PubMed - indexed for MEDLINE]
Related citations

935. **Compensatory caspase activation in MPP+-induced cell death in dopaminergic neurons.**
Chee JL, Guan XL, Lee JY, Dong B, Leong SM, Ong EH, Liou AK, Lim TM.
PMID: 15666094 [PubMed - indexed for MEDLINE]
Related citations

936. **Pathological proteins in Parkinson's disease: focus on the proteasome.**
Snyder H, Wolozin B.
PMID: 15655264 [PubMed - indexed for MEDLINE]
Related citations

937. **MPP+: mechanism for its toxicity in cerebellar granule cells.**
González-Polo RA, Soler G, Fuentes JM.
PMID: 15655251 [PubMed - indexed for MEDLINE]
Related citations
938. **RA410/Sly1 suppresses MPP+ and 6-hydroxydopamine-induced cell death in SH-SY5Y cells.**
Bando Y, Katayama T, Taniguchi M, Ishibashi T, Matsuo N, Ogawa S, Tohyama M.
PMID: 15649705 [PubMed - indexed for MEDLINE]
Related citations

939. **Pesticides and risk of Parkinson disease: a population-based case-control study.**
PMID: 15642854 [PubMed - indexed for MEDLINE]
Related citations

940. **Effect of sesamin in Acanthopanax senticosus HARMS on behavioral dysfunction in rotenone-induced parkinsonian rats.**
Related citations

941. **Uncoupling protein-2 is critical for nigral dopamine cell survival in a mouse model of Parkinson's disease.**
Andrews ZB, Horvath B, Barnstable CJ, Elsworth J, Yang L, Beal MF, Roth RH, Matthews RT, Horvath TL.
Related citations
942. **Acetylcholinesterase/paraoxonase interactions increase the risk of insecticide-induced Parkinson's disease.**
Related citations

943. **Mitochondrial complex I inhibition depletes plasma testosterone in the rotenone model of Parkinson's disease.**
Alam M, Schmidt WJ.
Physiol Behav. 2004 Dec 15;83(3):395-400.
PMID: 15581661 [PubMed - indexed for MEDLINE]
Related citations

944. **Chronic exposure to rotenone models sporadic Parkinson's disease in Drosophila melanogaster.**
Coulom H, Birman S.
Related citations

945. **Pramipexole protects against apoptotic cell death by non-dopaminergic mechanisms.**
Gu M, Iravani MM, Cooper JM, King D, Jenner P, Schapira AH.
PMID: 15569251 [PubMed - indexed for MEDLINE]
Related citations
946. **Toxicity of dipyridyl compounds and related compounds.**
Li S, Crooks PA, Wei X, de Leon J.
PMID: 15560568 [PubMed - indexed for MEDLINE]

Related citations

Laske C, Wormstall H, Einsiedler K, Buchkremer G.
PMID: 15551110 [PubMed - indexed for MEDLINE]

Related citations

948. **TRPC1-mediated inhibition of 1-methyl-4-phenylpyridinium ion neurotoxicity in human SH-SY5Y neuroblastoma cells.**
Bollimuntha S, Singh BB, Shavali S, Sharma SK, Ebadi M.

Related citations

949. **Environmental factors and Parkinson's disease: a case-control study in the Tuscany region of Italy.**
PMID: 15542008 [PubMed - indexed for MEDLINE]
950. The neuromelanin of human substantia nigra: physiological and pathogenic aspects.
PMID: 15541018 [PubMed - indexed for MEDLINE]

951. Rotenone, deguelin, their metabolites, and the rat model of Parkinson's disease.
PMID: 15540952 [PubMed - indexed for MEDLINE]

952. Pesticides and organic agriculture.
DiMatteo K.

953. Rotenone potentiates dopamine neuron loss in animals exposed to lipopolysaccharide prenatally.
Ling Z, Chang QA, Tong CW, Leurgans SE, Lipton JW, Carvey PM.
PMID: 15530876 [PubMed - indexed for MEDLINE]

954. Modulation of antioxidant defense
systems by the environmental pesticide maneb in dopaminergic cells.
Barlow BK, Lee DW, Cory-Slechta DA, Opanashuk LA.
PMID: 15527874 [PubMed - indexed for MEDLINE]
Related citations

955. Paraquat induces oxidative stress and neuronal cell death; neuroprotection by water-soluble Coenzyme Q10.
McCarthy S, Somayajulu M, Sikorska M, Borowy-Borowski H, Pandey S.
PMID: 15519605 [PubMed - indexed for MEDLINE]
Related citations

956. Comparative analysis of passive dosimetry and biomonitoring for assessing chlorpyrifos exposure in pesticide workers.
Geer LA, Cardello N, Dellarco MJ, Leighton TJ, Zendzian RP, Roberts JD, Buckley TJ.
Related citations

957. A fetal risk factor for Parkinson's disease.
Barlow BK, Richfield EK, Cory-Slechta DA, Thiruchelvam M.
PMID: 15509894 [PubMed - indexed for MEDLINE]
Related citations

958. Involvement of dopamine D(2)/D(3) receptors and BDNF in the neuroprotective effects of S32504 and pramipexole against 1-methyl-4-
phenylpyridinium in terminally differentiated SH-SY5Y cells.

959. Distinct mechanisms of neurodegeneration induced by chronic complex I inhibition in dopaminergic and non-dopaminergic cells.

960. Cigarette smoking and Parkinson's disease: a case-control study in a population characterized by a high prevalence of pesticide exposure.

961. Sensitivity of zebrafish to environmental toxins implicated in Parkinson's disease.

962. The cytotoxic activity of lactoperoxidase: enhancement and inhibition by neuroactive compounds.
Everse J, Coates PW.
PMID: 15384204 [PubMed - indexed for MEDLINE]

Related citations
963. Variable effects of chronic subcutaneous administration of rotenone on striatal histology.
PMID: 15384065 [PubMed - indexed for MEDLINE]

Related citations
964. The effect of macromolecular crowding on protein aggregation and amyloid fibril formation.
Munishkina LA, Cooper EM, Uversky VN, Fink AL.
PMID: 15362105 [PubMed - indexed for MEDLINE]

Related citations
965. Dopaminergic neurotoxicity of homocysteine and its derivatives in primary mesencephalic cultures.
Heider I, Lehmensiek V, Lenk T, Müller T, Storch A.
PMID: 15354384 [PubMed - indexed for MEDLINE]

Related citations
Conn KJ, Gao W, McKee A, Lan MS,
Ullman MD, Eisenhauer PB, Fine RE, Wells JM.
PMID: 15353226 [PubMed - indexed for MEDLINE]
Related citations

967. Activation of NF-kappaB is involved in 6-hydroxydopamine-but not MPP+-induced dopaminergic neuronal cell death: its potential role as a survival determinant.
Park SH, Choi WS, Yoon SY, Ahn YS, Oh YJ.
PMID: 15336524 [PubMed - indexed for MEDLINE]
Related citations

968. Paraoxonase 1 (PON1) gene polymorphisms and Parkinson's disease in a Finnish population.
Clarimon J, Eerola J, Hellström O, Tienari PJ, Singleton A.
PMID: 15331145 [PubMed - indexed for MEDLINE]
Related citations

969. Alpha and beta estradiol protect neuronal but not native PC12 cells from paraquat-induced oxidative stress.
PMID: 15325966 [PubMed - indexed for MEDLINE]
Related citations

970. Rotenone induces apoptosis via activation of bad in human dopaminergic SH-SY5Y cells.
Watabe M, Nakaki T.

Related citations

971. Epidemiology of multiple system atrophy: a prevalence and pilot risk factor study in Aquitaine, France.
Chrysostome V, Tison F, Yekhlef F, Sourgen C, Baldi I, Dartigues JF.
PMID: 15272223 [PubMed - indexed for MEDLINE]
Related citations

972. L-DOPA reverses the hypokinetic behaviour and rigidity in rotenone-treated rats.
Alam M, Schmidt WJ.
PMID: 15265640 [PubMed - indexed for MEDLINE]
Related citations

973. Effects of iptakalim on rotenone-induced cytotoxicity and dopamine release from PC12 cells.
PMID: 15265589 [PubMed - indexed for MEDLINE]
Related citations

974. Neurotoxicant-induced animal models of Parkinson's disease: understanding the role of rotenone, maneb and paraquat in neurodegeneration.
Uversky VN.
PMID: 15258850 [PubMed - indexed for
Clinical characteristics of Parkinson's disease among Inuit in Greenland and inhabitants of the Faroe Islands and Als (Denmark).

Nitrosative stress linked to sporadic Parkinson's disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity.

G209A mutant alpha synuclein expression specifically enhances dopamine induced oxidative damage.

Study on the risk factors and its interaction on Parkinson disease.

Tan XH, Wang SM, Xue NQ, Teng WT, Feng YQ.
979. **Inhibitory effects of 1-methyl-4-phenylpyridinium on glutamate uptake into cultured C6 glioma cells.**
Yao HH, Ding JH, He HR, Hu G.
Related citations

980. **Parkin protects human dopaminergic neuroblastoma cells against dopamine-induced apoptosis.**
Jiang H, Ren Y, Zhao J, Feng J.
Related citations

981. **Association of pesticide exposure with neurologic dysfunction and disease.**
Kamel F, Hoppin JA.
Related citations

982. **Protection against MPP+ neurotoxicity in cerebellar granule cells by antioxidants.**
González-Polo RA, Soler G, Rodríguezmartín A, Morán JM, Fuentes JM.
PMID: 15193280 [PubMed - indexed for MEDLINE]
Related citations
983. A non-peptidyl neurotrophic small molecule for midbrain dopaminergic neurons.
Lin LF, Rubin LL, Xu M.
PMID: 15189341 [PubMed - indexed for MEDLINE]

Related citations

984. The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization.

Related citations

985. Occupational and environmental risk factors for Parkinson's disease.
Lai BC, Marion SA, Teschke K, Tsui JK.
PMID: 15177059 [PubMed - indexed for MEDLINE]

Related citations

986. Further evidence that interactions between CYP2D6 and pesticide exposure increase risk for Parkinson's disease.
Deng Y, Newman B, Dunne MP, Silburn PA, Mellick GD.
PMID: 15174030 [PubMed - indexed for MEDLINE]

Related citations

987. Paraquat-induced apoptotic cell death in cerebellar granule cells.
Related citations

988. The herbicide paraquat induces dopaminergic nigral apoptosis through sustained activation of the JNK pathway.

989. Behavioral and immunohistochemical effects of chronic intravenous and subcutaneous infusions of varying doses of rotenone.
Related citations

990. Genetic ablation of tumor necrosis factor-alpha (TNF-alpha) and pharmacological inhibition of TNF-synthesis attenuates MPTP toxicity in mouse striatum.
Related citations

991. Neuroprotective effect of fraxetin and myricetin against rotenone-induced apoptosis in neuroblastoma cells.
Molina-Jiménez MF, Sánchez-Reus MI,
Andres D, Cascales M, Benedi J.
PMID: 15120578 [PubMed - indexed for MEDLINE]
Related citations

992. **Acute exposure to organochlorine pesticides does not affect striatal dopamine in mice.**
Thiffault C, Langston WJ, Di Monte DA.
PMID: 15111243 [PubMed]
Related citations

993. **Brain inflammation enhances 1-methyl-4-phenylpyridinium-evoked neurotoxicity in rats.**
Goralski KB, Renton KW.
PMID: 15094308 [PubMed - indexed for MEDLINE]
Related citations

994. **Alpha-synuclein: normal function and role in neurodegenerative diseases.**
Norris EH, Giasson BI, Lee VM.
PMID: 15094295 [PubMed - indexed for MEDLINE]
Related citations

995. **Dopamine transporter-mediated cytotoxicity of beta-carbolinium derivatives related to Parkinson's disease: relationship to transporter-dependent uptake.**
Storch A, Hwang YI, Gearhart DA, Beach JW, Neafsey EJ, Collins MA, Schwarz J.
PMID: 15086525 [PubMed - indexed for MEDLINE]
Related citations
996. *The neurobehavioral changes induced by bilateral rotenone lesion in medial forebrain bundle of rats are reversed by L-DOPA.*

PMID: 15084427 [PubMed - indexed for MEDLINE]
Related citations

997. *Oxidative stress and microglial activation in substantia nigra following striatal MPP+.*

PMID: 15076730 [PubMed - indexed for MEDLINE]
Related citations

998. *Proteolytic activation of proapoptotic kinase PKCdelta is regulated by overexpression of Bcl-2: implications for oxidative stress and environmental factors in Parkinson's disease.*

PMID: 15033812 [PubMed - indexed for MEDLINE]
Related citations

999. *Suppression of caspase-3-dependent proteolytic activation of protein kinase C delta by small interfering RNA prevents MPP+-induced dopaminergic degeneration.*

Chronic administration of rotenone increases levels of nitric oxide and lipid peroxidation products in rat brain.
Bashkatova V, Alam M, Vanin A, Schmidt WJ.
PMID: 15026259 [PubMed - indexed for MEDLINE]

Inhibition of mixed lineage kinase 3 attenuates MPP+-induced neurotoxicity in SH-SY5Y cells.
Mathiasen JR, McKenna BA, Saporito MS, Ghadge GD, Roos RP, Holskin BP, Wu ZL, Trusko SP, Connors TC, Maroney AC, Thomas BA, Thomas JC, Bozyczko-Coyne D.
Brain Res. 2004 Apr 2;1003(1-2):86-97.
PMID: 15019567 [PubMed - indexed for MEDLINE]

Parkinson's disease, pesticides and individual vulnerability.
Paolini M, Sapone A, Gonzalez FJ.
PMID: 15019266 [PubMed - indexed for MEDLINE]

Use of a VA pharmacy database to screen for areas at high risk for disease: Parkinson's disease and exposure to pesticides.
1004. **Risk factors for dopaminergic neuron loss in human alpha-synuclein transgenic mice.**
Thiruchelvam MJ, Powers JM, Cory-Slechta DA, Richfield EK.
PMID: 15009131 [PubMed - indexed for MEDLINE]

1005. **CYP2D6 polymorphism, pesticide exposure, and Parkinson's disease.**
PMID: 14991823 [PubMed - indexed for MEDLINE]

1006. **Clearance of alpha-synuclein oligomeric intermediates via the lysosomal degradation pathway.**
Lee HJ, Khoshaghideh F, Patel S, Lee SJ.

1007. **Rotenone-induced apoptosis is mediated by p38 and JNK MAP kinases in human dopaminergic SH-SY5Y cells.**
Epub 2004 Feb 19.
Related citations

1008. [Caffeic acid (CA) protects cerebellar granule neurons (CGNs) from apoptosis induced by neurotoxin 1-methyl-4-phenylpyridinium (MPP+)].
Tian XF, Pu XP.

Related citations

1009. Effect of melatonin on temporal changes of reactive oxygen species and glutathione after MPP(+) treatment in human astrocytoma U373MG cells.
Chuang JI, Chen TH.
PMID: 14962063 [PubMed-indexed for MEDLINE]

Related citations

1010. Rotenone induces non-specific central nervous system and systemic toxicity.
Lapointe N, St-Hilaire M, Martinoli MG, Blanchet J, Gould P, Rouillard C, Cicchetti F.

Related citations

1011. 1-Methyl-4-phenylpyridinium-induced apoptosis in cerebellar granule neurons is mediated by transferrin receptor iron-dependent depletion of tetrahydrobiopterin and neuronal nitric-oxide synthase-derived superoxide.
Shang T, Kotamraju S, Kalivendi SV, Hillard CJ, Kalyanaraman B.
Related citations

1012. Enhanced in vitro midbrain dopamine neuron differentiation, dopaminergic function, neurite outgrowth, and 1-methyl-4-phenylpyridium resistance in mouse embryonic stem cells overexpressing Bcl-XL.
Shim JW, Koh HC, Chang MY, Roh E, Choi CY, Oh YJ, Son H, Lee YS, Studer L, Lee SH.
Related citations

1013. Alpha-synuclein up-regulation and aggregation during MPP+-induced apoptosis in neuroblastoma cells: intermediacy of transferrin receptor iron and hydrogen peroxide.
Kalivendi SV, Cunningham S, Kotamraju S, Joseph J, Hillard CJ, Kalyanaraman B.
Related citations

1014. Andrographolide reduces inflammation-mediated dopaminergic neurodegeneration in mesencephalic neuron-glia cultures by inhibiting microglial activation.
Related citations
1015. **Paraquat and iron exposure as possible synergistic environmental risk factors in Parkinson's disease.**
Andersen JK.
Review. No abstract available.
PMID: 14715449 [PubMed - indexed for MEDLINE]
Related citations

1016. **Multiple risk factors for Parkinson's disease.**
Gorell JM, Peterson EL, Rybicki BA, Johnson CC.
PMID: 14706220 [PubMed - indexed for MEDLINE]
Related citations

1017. **alpha-Synuclein selectively increases manganese-induced viability loss in SK-N-MC neuroblastoma cells expressing the human dopamine transporter.**
Pifl C, Khorchide M, Kattinger A, Reither H, Hardy J, Hornykiewicz O.
PMID: 14698476 [PubMed - indexed for MEDLINE]
Related citations

1018. **Melatonin protects against oxidative stress caused by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in the mouse nigrostriatum.**
Thomas B, Mohanakumar KP.
PMID: 14675127 [PubMed - indexed for MEDLINE]
Related citations

1019. **Proteasome mediates dopaminergic neuronal degeneration, and its inhibition causes alpha-synuclein inclusions.**

Related citations

1020. Dopamine is involved in selectivity of dopaminergic neuronal death by rotenone.
PMID: 14663204 [PubMed - indexed for MEDLINE]

Related citations

1021. Acetaminophen and aspirin inhibit superoxide anion generation and lipid peroxidation, and protect against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats.
Maharaj DS, Saravanan KS, Maharaj H, Mohanakumar KP, Daya S.
PMID: 14643753 [PubMed - indexed for MEDLINE]

Related citations

1022. Mechanism of toxicity in rotenone models of Parkinson's disease.
Sherer TB, Betarbet R, Testa CM, Seo BB, Richardson JR, Kim JH, Miller GW, Yagi T, Matsuno-Yagi A, Greenamyre JT.
J Neurosci. 2003 Nov 26;23(34):10756-64.
PMID: 14645467 [PubMed - indexed for
1023. **Neuroprotective effects of the novel D3/D2 receptor agonist and antiparkinson agent, S32504, in vitro against 1-methyl-4-phenylpyridinium (MPP+) and in vivo against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP): a comparison to ropinirole.**

Joyce JN, Presgraves S, Renish L, Borwege S, Osredkar T, Hagner D, Replogle M, PazSoldan M, Millan MJ.

PMID: 14637109 [PubMed - indexed for MEDLINE]

1024. **The pesticide rotenone induces caspase-3-mediated apoptosis in ventral mesencephalic dopaminergic neurons.**

Ahmadi FA, Linseman DA, Grammatopoulos TN, Jones SM, Bouchard RJ, Freed CR, Heidenreich KA, Zawada WM.

PMID: 14622122 [PubMed - indexed for MEDLINE]

1025. **An inhibitor of mitochondrial complex I, rotenone, inactivates proteasome by oxidative modification and induces aggregation of oxidized proteins in SH-SY5Y cells.**

PMID: 14598303 [PubMed - indexed for MEDLINE]

1026. **PDNF, a human parasite-derived mimic**

MEDLINE] Free Article

Related citations
of neurotrophic factors, prevents caspase activation, free radical formation, and death of dopaminergic cells exposed to the Parkinsonism-inducing neurotoxin MPP+.

Related citations

1027. Neuromelanin of the substantia nigra: a neuronal black hole with protective and toxic characteristics.

Related citations

1028. Environmental, life-style, and physical precursors of clinical Parkinson's disease: recent findings from the Honolulu-Asia Aging Study.

Related citations

Related citations

Related citations

Related citations

Related citations

Related citations

1034. The mitochondrial complex I inhibitor
annonacin is toxic to mesencephalic dopaminergic neurons by impairment of energy metabolism.
PMID: 14521988 [PubMed - indexed for MEDLINE]
Related citations

1035. **Minocycline enhances MPTP toxicity to dopaminergic neurons.**
PMID: 14515357 [PubMed - indexed for MEDLINE]
Related citations

1036. **Rotenone increases glutamate-induced dopamine release but does not affect hydroxyl-free radical formation in rat striatum.**
Leng A, Feldon J, Ferger B.
PMID: 14515342 [PubMed - indexed for MEDLINE]
Related citations

1037. **Targeted expression of BCL-2 attenuates MPP+ but not 6-OHDA induced cell death in dopaminergic neurons.**
O'Malley KL, Liu J, Lotharius J, Holtz W.
PMID: 13678665 [PubMed - indexed for MEDLINE]
Related citations

1038. **Differential regulation of JNK in**
caspase-3-mediated apoptosis of MPP(+)-treated primary cortical neurons.
Sun DS, Chang HH.
PMID: 12972283 [PubMed - indexed for MEDLINE]
Related citations
1039. Modulation of dopamine transporter function by alpha-synuclein is altered by impairment of cell adhesion and by induction of oxidative stress.
Wersinger C, Prou D, Vernier P, Sidhu A.
Epub 2003 Sep 4.
Related citations
1040. Lifestyle-related risk factors for Parkinson's disease: a population-based study.
PMID: 12956856 [PubMed - indexed for MEDLINE]
Related citations
Uversky VN.
PMID: 12956606 [PubMed - indexed for MEDLINE]
Related citations
1042. **Role of nitric oxide in rotenone-induced nigro-striatal injury.**
He Y, Imam SZ, Dong Z, Jankovic J, Ali SF, Appel SH, Le W.
PMID: 12950443 [PubMed - indexed for MEDLINE]
Related citations

1043. **The neuromelanin of human substantia nigra: structure, synthesis and molecular behaviour.**
PMID: 12946053 [PubMed - indexed for MEDLINE]
Related citations

1044. **Animal models of Parkinson's disease in rodents induced by toxins: an update.**
PMID: 12946051 [PubMed - indexed for MEDLINE]
Related citations

1045. **The environment and Parkinson's disease: is the nigrostriatal system preferentially targeted by neurotoxins?**
Di Monte DA.
PMID: 12941575 [PubMed - indexed for MEDLINE]
Related citations

1046. **The rotenone model of Parkinson's**
disease: genes, environment and mitochondria.
PMID: 12915069 [PubMed - indexed for MEDLINE]
Related citations

PMID: 12915048 [PubMed - indexed for MEDLINE]
Related citations

1048. Age-related irreversible progressive nigrostriatal dopaminergic neurotoxicity in the paraquat and maneb model of the Parkinson's disease phenotype.
PMID: 12911755 [PubMed - indexed for MEDLINE]
Related citations

PMID: 12911637 [PubMed - indexed for MEDLINE]
Related citations

1050. Association between Parkinson's disease and exposure to pesticides in
southwestern France.
Baldi I, Cantagrel A, Lebailly P, Tison F, Dubroca B, Chrysostome V, Dartigues JF, Brochard P.
PMID: 12902626 [PubMed - indexed for MEDLINE]
Related citations

1051. Paraquat leads to dopaminergic neural vulnerability in organotypic midbrain culture.
Shimizu K, Matsubara K, Ohtaki K, Shiono H.
PMID: 12871774 [PubMed - indexed for MEDLINE]
Related citations

1052. Circadian rhythms of oxidative phosphorylation: effects of rotenone and melatonin on isolated rat brain mitochondria.
Simon N, Papa K, Vidal J, Boulamery A, Bruguerolle B.
PMID: 12868540 [PubMed - indexed for MEDLINE]
Related citations

1053. Critical role for microglial NADPH oxidase in rotenone-induced degeneration of dopaminergic neurons.
Gao HM, Liu B, Hong JS.
Related citations

1054. Effect of fraxetin and myricetin on rotenone-induced cytotoxicity in SH-SY5Y cells: comparison with N-acetylcysteine.
Molina-Jimenez MF, Sanchez-Reus MI, Benedi J.
PMID: 12860476 [PubMed - indexed for MEDLINE]

Related citations

Goers J, Manning-Bog AB, McCormack AL, Millett IS, Doniach S, Di Monte DA, Uversky VN, Fink AL.
PMID: 12859192 [PubMed - indexed for MEDLINE]

Related citations

1056. Molecular mechanisms of dopaminergic neurodegeneration: genetic and environmental basis.
Imam SZ.
PMID: 12853331 [PubMed - indexed for MEDLINE]

Related citations

1057. Mitochondria as a target for neurotoxins and neuroprotective agents.
Bachurin SO, Shevtsova EP, Kireeva EG, Oxenkrug GF, Sablin SO.
PMID: 12853325 [PubMed - indexed for MEDLINE]

Related citations

1058. The rotenone model of Parkinson's disease.
Perier C, Bové J, Vila M, Przedborski S.
PMID: 12850429 [PubMed - indexed for MEDLINE]
Related citations

1059. **Caspase-dependent and -independent cell death pathways in primary cultures of mesencephalic dopaminergic neurons after neurotoxin treatment.**
Han BS, Hong HS, Choi WS, Markelonis GJ, Oh TH, Oh YJ.
Related citations

1060. **Parkinson's disease and exposure to infectious agents and pesticides and the occurrence of brain injuries: role of neuroinflammation.**
Liu B, Gao HM, Hong JS.
Related citations

1061. **Models of Parkinson's disease.**
Orth M, Tabrizi SJ.
PMID: 12815651 [PubMed - indexed for MEDLINE]
Related citations

1062. **Alpha-synuclein protects naive but not dbcAMP-treated dopaminergic cell types from 1-methyl-4-phenylpyridinium toxicity.**
Jensen PJ, Alter BJ, O'Malley KL.
PMID: 12807439 [PubMed - indexed for MEDLINE]
Related citations

1063. **Pesticides and Parkinson's disease.**
Related citations

1064. Paraquat induces long-lasting dopamine overflow through the excitotoxic pathway in the striatum of freely moving rats.
Shimizu K, Matsubar K, Ohtaki K, Fujimaru S, Saito O, Shiono H.
Related citations

1065. Ca2+-induced oxidative stress in brain mitochondria treated with the respiratory chain inhibitor rotenone.
Sousa SC, Maciel EN, Vercesi AE, Castilho RF.
Related citations

Droździk M, Białecka M, Myśliwiec K, Honczarenko K, Stankiewicz J, Sych Z.
Related citations

1067. Parkinson's disease risk factors.
Allam MF, del Castillo AS, Navajas RF.
1068. Alpha-synuclein overexpression protects against paraquat-induced neurodegeneration.
Manning-Bog AB, McCormack AL, Purisai MG, Bolin LM, Di Monte DA.

1069. Increased synaptosomal dopamine content and brain concentration of paraquat produced by selective dithiocarbamates.
Barlow BK, Thiruchelvam MJ, Bennice L, Cory-Slechta DA, Ballatori N, Richfield EK.
PMID: 12716439 [PubMed-indexed for MEDLINE]

1070. Dependence on electron transport chain function and intracellular signaling of genomic responses in SH-SY5Y cells to the mitochondrial neurotoxin MPP(+).
Brill LB 2nd, Bennett JP Jr.
PMID: 12710931 [PubMed-indexed for MEDLINE]

1071. Update on Parkinson disease.
Siderowf A, Stern M.
PMID: 12693888 [PubMed-indexed for MEDLINE]

1072. [Genetics and environmental factors of Parkinson disease]
Parkinson disease.
Broussolle E, Thobois S.
PMID: 12690660 [PubMed - indexed for MEDLINE]

Related citations
1073. [Genetic and environmental factors of Parkinson's disease]
Broussolle E, Thobois S.
PMID: 12690311 [PubMed - as supplied by publisher]

Related citations
1074. Selective microglial activation in the rat rotenone model of Parkinson's disease.
Sherer TB, Betarbet R, Kim JH, Greenamyre JT.
PMID: 12686372 [PubMed - indexed for MEDLINE]

Related citations
1075. Dextromethorphan protects dopaminergic neurons against inflammation-mediated degeneration through inhibition of microglial activation.

Related citations
1076. Transient and reversible parkinsonism after acute organophosphate poisoning.
Arima H, Sobue K, So M, Morishima T, Ando H, Katsuya H.
Tetrahydrobiopterin precursor sepiapterin provides protection against neurotoxicity of 1-methyl-4-phenylpyridinium in nigral slice cultures.

Effects of L-dopa and other amino acids against paraquat-induced nigrostriatal degeneration.

Neuroprotective effect of vasoactive intestinal peptide (VIP) in a mouse model of Parkinson's disease by blocking microglial activation.

Non-steroidal anti-inflammatory drug sodium salicylate, but not diclofenac or celecoxib, protects against 1-methyl-4-phenylpyridinium-induced dopaminergic neurotoxicity in rats.
Sairam K, Saravanan KS, Banerjee R, Mohanakumar KP.
PMID: 12618347 [PubMed - indexed for MEDLINE]

Related citations

1081. Neurodegenerative diseases and exposure to pesticides in the elderly.
Baldi I, Lebailly P, Mohammed-Brahim B, Letenneur L, Dartigues JF, Brochard P.
Related citations

1082. Synergistic dopaminergic neurotoxicity of the pesticide rotenone and inflammogen lipopolysaccharide: relevance to the etiology of Parkinson's disease.
Gao HM, Hong JS, Zhang W, Liu B.
Related citations

Holtz WA, O'Malley KL.
Related citations

1084. The role of glycolysis and gluconeogenesis in the cytoprotection of neuroblastoma cells against 1-methyl 4-phenylpyridinium ion toxicity.
Mazzio E, Soliman KF.
PMID: 12564389 [PubMed - indexed for MEDLINE]
Related citations

1085. Regulation of alpha-synuclein by bFGF in cultured ventral midbrain dopaminergic neurons.
Rideout HJ, Dietrich P, Savalle M, Dauer WT, Stefanis L.
PMID: 12562524 [PubMed - indexed for MEDLINE]
Related citations

1086. Manganese ethylene-bis-dithiocarbamate and selective dopaminergic neurodegeneration in rat: a link through mitochondrial dysfunction.
Zhang J, Fitsanakis VA, Gu G, Jing D, Ao M, Amarnath V, Montine TJ.
PMID: 12558996 [PubMed - indexed for MEDLINE]
Related citations

1087. Chronic systemic complex I inhibition induces a hypokinetic multisystem degeneration in rats.
PMID: 12558969 [PubMed - indexed for MEDLINE]
Related citations

PMID: 12548372 [PubMed - indexed for MEDLINE]

Related citations

PMID: 12539205 [PubMed - indexed for MEDLINE]

Related citations

1090. Subtoxic concentration of manganese synergistically potentiates 1-methyl-4-phenylpyridinium-induced neurotoxicity in PC12 cells.
Wang RG, Zhu XZ.
PMID: 12535785 [PubMed - indexed for MEDLINE]

Related citations

1091. An inflammatory review of Parkinson's disease.
Orr CF, Rowe DB, Halliday GM.
PMID: 12531233 [PubMed - indexed for MEDLINE]

Related citations

1092. Pyruvic acid cytoprotection against 1-methyl-4-phenylpyridinium, 6-hydroxydopamine and hydrogen peroxide toxicities in vitro.
Mazzio E, Soliman KF.
PMID: 12527392 [PubMed - indexed for MEDLINE]

Related citations
1093. 1-Methyl-4-phenylpyridinium (MPP+)-induced apoptosis and mitochondrial oxidant generation: role of transferrin-receptor-dependent iron and hydrogen peroxide.
Kalivendi SV, Kotamraju S, Cunningham S, Shang T, Hillard CJ, Kalyanaraman B.
Biochem J. 2003 Apr 1;371(Pt 1):151-64.
Related citations

1094. 1-methyl-4-phenylpyridinium (MPP+) decreases mitochondrial oxidation-reduction (REDOX) activity and membrane potential (Deltapsi(m)) in rat striatum.
Nakai M, Mori A, Watanabe A, Mitsumoto Y.
PMID: 12504872 [PubMed - indexed for MEDLINE]
Related citations

1095. Mitochondrial complex inhibitors preferentially damage substantia nigra dopamine neurons in rat brain slices.
Bywood PT, Johnson SM.
PMID: 12504867 [PubMed - indexed for MEDLINE]
Related citations

1096. Neurotrophic and neuroprotective effects of tripchlorolide, an extract of Chinese herb Tripterygium wilfordii Hook F, on dopaminergic neurons.
Li FQ, Cheng XX, Liang XB, Wang XH, Xue B, He QH, Wang XM, Han JS.
PMID: 12504865 [PubMed - indexed for MEDLINE]
Related citations

1097. Subcutaneous rotenone exposure causes highly selective dopaminergic degeneration and alpha-synuclein aggregation.
Sherer TB, Kim JH, Betarbet R, Greenamyre JT.
PMID: 12504863 [PubMed - indexed for MEDLINE]

Related citations

Trojanowski JQ.
PMID: 12504862 [PubMed - indexed for MEDLINE]

Related citations

1099. Effects of green tea polyphenols on dopamine uptake and on MPP+ -induced dopamine neuron injury.
Pan T, Fei J, Zhou X, Jankovic J, Le W.
PMID: 12495785 [PubMed - indexed for MEDLINE]

Related citations

1100. Catalysis of catechol oxidation by metal-dithiocarbamate complexes in pesticides.
Fitsanakis VA, Amarnath V, Moore JT, Montine KS, Zhang J, Montine TJ.
PMID: 12488139 [PubMed - indexed for MEDLINE]

Related citations

1102. Quantitative relationship between inhibition of respiratory complexes and formation of reactive oxygen species in isolated nerve terminals.

1103. In vivo evaluation of [11C]-3-[2-[(3-methoxyphenylamino)carbonyl]ethenyl]-4,6-dichloroindole-2-carboxylic acid ([11C]3MPICA) as a PET radiotracer for the glycine site of the NMDA ion channel.

1104. Tubuloside B from Cistanche salsa rescues the PC12 neuronal cells from 1-methyl-4-phenylpyridinium ion-induced apoptosis and oxidative stress.

PMID: 12437580 [PubMed - indexed for MEDLINE]

Related citations

1106. Plantation work and risk of Parkinson disease in a population-based longitudinal study.
Petrovitch H, Ross GW, Abbott RD, Sanderson WT, Sharp DS, Tanner CM, Masaki KH, Blanchette PL, Popper JS, Foley D, Launer L, White LR.
PMID: 12433267 [PubMed - indexed for MEDLINE]

Related citations

1107. Developmental exposure to the pesticides paraquat and maneb and the Parkinson's disease phenotype.
Thiruchelvam M, Richfield EK, Goodman BM, Baggs RB, Cory-Slechta DA.
PMID: 12428734 [PubMed - indexed for MEDLINE]

Related citations

1108. Conformational behavior of human alpha-synuclein is modulated by familial Parkinson's disease point mutations A30P and A53T.
Li J, Uversky VN, Fink AL.
PMID: 12428728 [PubMed - indexed for MEDLINE]

Related citations

1109. Selective effects of insecticides on nigrostriatal dopaminergic nerve pathways.
Bloomquist JR, Barlow RL, Gillette JS, Li W, Kirby ML.
Neurotoxicology. 2002 Oct;23(4-5):537-
110. Synergistic effects of pesticides and metals on the fibrillation of alpha-synuclein: implications for Parkinson's disease.
PMID: 12428725 [PubMed-indexed for MEDLINE]
Related citations

111. Environmental factors in Parkinson's disease.
PMID: 12428721 [PubMed-indexed for MEDLINE]
Related citations

112. Identification of brain proteins that interact with 2-methylnorharman. An analog of the parkinsonian-inducing toxin, MPP+.
PMID: 12413654 [PubMed-indexed for MEDLINE]
Related citations

113. Overexpression of midbrain-specific transcription factor Nurr1 modifies susceptibility of mouse neural stem cells to neurotoxins.
8. PMID: 12401563 [PubMed - indexed for MEDLINE]
Related citations

1114. Possible involvement of both mitochondria- and endoplasmic reticulum-dependent caspase pathways in rotenone-induced apoptosis in human neuroblastoma SH-SY5Y cells.
PMID: 12401552 [PubMed - indexed for MEDLINE]
Related citations

1115. Rotenone destroys dopaminergic neurons and induces parkinsonian symptoms in rats.
PMID: 12385818 [PubMed - indexed for MEDLINE]
Related citations

PMID: 12376887 [PubMed - indexed for MEDLINE]
Related citations

1117. Resistance of alpha-synuclein null mice to the parkinsonian neurotoxin MPTP.
Methylpyridinium (MPP(+))- and nerve growth factor-induced changes in pro- and anti-apoptotic signaling pathways in SH-SY5Y neuroblastoma cells.
PMID: 12363409 [PubMed - indexed for MEDLINE]
Related citations

Regulation of hydrogen peroxide production by brain mitochondria by calcium and Bax.
Starkov AA, Polster BM, Fiskum G.
PMID: 12358746 [PubMed - indexed for MEDLINE]
Related citations

Pesticide-Parkinson link explored.
Bonetta L.
PMID: 12357226 [PubMed - indexed for MEDLINE]
Related citations

Pesticide exposure, host susceptibility factors and risk of Parkinson's disease; an introduction to a work in progress.
Greenlee AR, Burmester JK, Hiner BC.
PMID: 12239976 [PubMed - indexed for MEDLINE]
Related citations
1122. **Neuroprotective effect of estradiol and phytoestrogens on MPP+-induced cytotoxicity in neuronal PC12 cells.**
Gélinas S, Martinoli MG.
PMID: 12237867 [PubMed - indexed for MEDLINE]

Related citations

1123. **Protective effect of verbascoside on 1-methyl-4-phenylpyridinium ion-induced neurotoxicity in PC12 cells.**
Sheng GQ, Zhang JR, Pu XP, Ma J, Li CL.
PMID: 12231380 [PubMed - indexed for MEDLINE]

Related citations

1124. **Selective destruction of dopaminergic neurons by low concentrations of 6-OHDA and MPP+: protection by acetylsalicylic acid aspirin.**
Carrasco E, Werner P.
PMID: 12217628 [PubMed - indexed for MEDLINE]

Related citations

1125. **Further evidence for an association of the paraoxonase 1 (PON1) Met-54 allele with Parkinson's disease.**
Carmine A, Buervenich S, Sydow O, Anvret M, Olson L.
PMID: 12210872 [PubMed - indexed for MEDLINE]

Related citations

1126. **Activation of adenosine triphosphate-sensitive potassium channels confers protection against rotenone-induced cell death: therapeutic implications for**
Parkinson's disease.
Tai KK, Truong DD.
PMID: 12210849 [PubMed - indexed for MEDLINE]

Related citations

1127. NMDA sensitization and stimulation by peroxynitrite, nitric oxide, and organic solvents as the mechanism of chemical sensitivity in multiple chemical sensitivity.
Pall ML.

Related citations

1128. Dopamine efflux by MPTP and hydroxyl radical generation.
Obata T.
PMID: 12203043 [PubMed - indexed for MEDLINE]

Related citations

1129. MPTP: insights into parkinsonian neurodegeneration.
Speciale SG.
PMID: 12200192 [PubMed - indexed for MEDLINE]

Related citations

1130. Apoptotic molecules and MPTP-induced cell death.
Nicotra A, Parvez S.
PMID: 12200191 [PubMed - indexed for MEDLINE]
1131. Potential neurotoxic "agents provocateurs" in Parkinson's disease.
Collins MA, Neafsey EJ.
PMID: 12200188 [PubMed - indexed for MEDLINE]
Related citations

1132. An in vitro model of Parkinson's disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage.
Related citations

Lehmensiek V, Tan EM, Schwarz J, Storch A.
PMID: 12151787 [PubMed - indexed for MEDLINE]
Related citations

1134. Modifying effects of dietary capsaicin and rotenone on 4-nitroquinoline 1-oxide-induced rat tongue carcinogenesis.
Tanaka T, Kohno H, Sakata K, Yamada Y, Hirose Y, Sugie S, Mori H.
Related citations
1135. Environmental risk factors of young onset Parkinson's disease: a case-control study.
 Tsai CH, Lo SK, See LC, Chen HZ, Chen RS, Weng YH, Chang FC, Lu CS.
 PMID: 12140099 [PubMed - indexed for MEDLINE]
 Related citations

1136. Estradiol protects dopaminergic neurons in a MPP+Parkinson's disease model.
 Neuropharmacology. 2002 Jun;42(8):1056-64.
 PMID: 12128007 [PubMed - indexed for MEDLINE]
 Related citations

1137. Environmental risk factors and Parkinson's disease: selective degeneration of nigral dopaminergic neurons caused by the herbicide paraquat.
 PMID: 12127150 [PubMed - indexed for MEDLINE]
 Related citations

1138. Pergolide protects dopaminergic neurons in primary culture under stress conditions.
 PMID: 12111455 [PubMed - indexed for
1139. Differential regulation of glutamic acid decarboxylase mRNA and tyrosine hydroxylase mRNA expression in the aged manganese-treated rats.
PMID: 12106697 [PubMed - indexed for MEDLINE]

Le Couteur DG, Muller M, Yang MC, Mellick GD, McLean AJ.
PMID: 12088093 [PubMed - indexed for MEDLINE]

1141. Age-related alteration in hepatic disposition of the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and pesticides.
Yang MC, McLean AJ, Le Couteur DG.
PMID: 12076315 [PubMed - indexed for MEDLINE]

1142. Protection of dopaminergic neurons in primary culture by lisuride.
Coenzyme Q cytoprotective mechanisms for mitochondrial complex I cytopathies involves NAD(P)H: quinone oxidoreductase 1 (NQO1).
Chan TS, Teng S, Wilson JX, Galati G, Khan S, O'Brien PJ.
PMID: 12069106 [PubMed-indexed for MEDLINE]

MPP+ increases alpha-synuclein expression and ERK/MAP-kinase phosphorylation in human neuroblastoma SH-SY5Y cells.
Gómez-Santos C, Ferrer I, Reiriz J, Viñals F, Barrachina M, Ambrosio S.
PMID: 12062470 [PubMed-indexed for MEDLINE]

Environment, mitochondria, and Parkinson's disease.
Sherer TB, Betarbet R, Greenamyre JT.
PMID: 12061498 [PubMed-indexed for MEDLINE]

Role of hydroxyl radical formation in neurotoxicity as revealed by in vivo free radical trapping.
Obata T.
PMID: 12044541 [PubMed-indexed for MEDLINE]
1147. **Effect of the catechol-O-methyltransferase inhibitor entacapone on the steady-state pharmacokinetics and pharmacodynamics of warfarin.**
Dingemanse J, Meyerhoff C, Schadrack J.
PMID: 11994054 [PubMed - indexed for MEDLINE] [Free PMC Article]
Related citations

1148. **Melatonin attenuates MPP+-induced neurodegeneration and glutathione impairment in the nigrostriatal dopaminergic pathway.**
Chen ST, Chuang JJ, Hong MH, Li EI.
PMID: 11982797 [PubMed - indexed for MEDLINE]
Related citations

1149. **[Human GDNF cDNA-engineered SH-SY5Y cells' neurotrophic and protective effect on primary dopaminergic neurons of rat].**
Zhang W, Wang X, Yang Y.
PMID: 11930634 [PubMed - indexed for MEDLINE]
Related citations

1150. **[Elucidation of paraquat poisoning mechanism and development of the neuronal death model].**
Fukushima T.
PMID: 11928321 [PubMed - indexed for MEDLINE]
Related citations

1151. **Paraquat- and diquat-induced oxygen**
radical generation and lipid peroxidation in rat brain microsomes.
Yumino K, Kawakami I, Tamura M, Hayashi T, Nakamura M.
Related citations

1152. Caspase inhibitors attenuate 1-methyl-4-phenylpyridinium toxicity in primary cultures of mesencephalic dopaminergic neurons.
Related citations

1153. Familial and environmental risk factors in Parkinson's disease: a case-control study in north-east Italy.
Zorzon M, Capus L, Pellegrino A, Cazzato G, Zivadinov R.
PMID: 11903115 [PubMed - indexed for MEDLINE]
Related citations

1154. Evaluation of the protective effect of oestradiol against toxicity induced by 6-hydroxydopamine and 1-methyl-4-phenylpyridinium ion (Mpp+) towards dopaminergic mesencephalic neurones in primary culture.
Callier S, Le Saux M, Lhiaubet AM, Di Paolo T, Rostène W, Pelaprat D.
PMID: 11902121 [PubMed - indexed for MEDLINE]
Related citations
1155. **Neuroprotection by adenosine A2A receptor blockade in experimental models of Parkinson's disease.**
Ikeda K, Kurokawa M, Aoyama S, Kuwana Y.
PMID: 11902116 [PubMed - indexed for MEDLINE]
Related citations

1156. **Thioredoxin suppresses 1-methyl-4-phenylpyridinium-induced neurotoxicity in rat PC12 cells.**
Bai J, Nakamura H, Hattori I, Tanito M, Yodoi J.
PMID: 11872262 [PubMed - indexed for MEDLINE]
Related citations

1157. **Neurotoxicity of MPTP.**
Fukuda T.
PMID: 11837540 [PubMed - indexed for MEDLINE]
Related citations

1158. **Inhibition by R(+) or S(-) pramipexole of caspase activation and cell death induced by methylpyridinium ion or beta amyloid peptide in SH-SY5Y neuroblastoma.**
PMID: 11835316 [PubMed - indexed for MEDLINE]
Related citations

1159. **Selected presentations and general discussion: session IX summary and research needs.**
Related citations

Related citations

Related citations

1164. Paraquat in developing countries.
PMID: 11783857 [PubMed - indexed for MEDLINE]
Related citations

PMID: 11781409 [PubMed - indexed for MEDLINE]
Related citations

1166. Optimism pervades Parkinson's conference.
Booker SM.
Related citations

1167. Dieldrin-induced oxidative stress and
neurochemical changes contribute to apoptotic cell death in dopaminergic cells.

Kitazawa M, Anantharam V, Kanthasamy AG.
PMID: 11728820 [PubMed - indexed for MEDLINE]

Related citations

1168. Substantia nigra neuromelanin: structure, synthesis, and molecular behaviour.
Zecca L, Tampellini D, Gerlach M, Riederer P, Fariello RG, Sulzer D.
Review.

Related citations

1169. Formation and removal of alpha-synuclein aggregates in cells exposed to mitochondrial inhibitors.
Lee HJ, Shin SY, Choi C, Lee YH, Lee SJ.

Related citations

Manning-Bog AB, McCormack AL, Li J, Uversky VN, Fink AL, Di Monte DA.

Related citations

1171. Impairment of the neuronal dopamine
transporter activity in MPP(+)‐treated rat was not prevented by treatments with nitric oxide synthase or poly(ADP‐ribose) polymerase inhibitors.

Barc S, Page G, Barrier L, Piriou A, Fauconneau B.
PMID: 11698152 [PubMed - indexed for MEDLINE]
Related citations

1172. Caspase‐3 activation induced by inhibition of mitochondrial complex I is facilitated by glycogen synthase kinase‐3beta and attenuated by lithium.
King TD, Bijur GN, Jope RS.
PMID: 11689167 [PubMed - indexed for MEDLINE]
Related citations

1173. Warfarin and ropinirole interaction.
Bair JD, Oppelt TF.
PMID: 11675845 [PubMed - indexed for MEDLINE]
Related citations

1174. Nicotine administration reduces striatal MPP+ levels in mice.
Quik M, Di Monte DA.
PMID: 11640907 [PubMed - indexed for MEDLINE]
Related citations

1175. Pathogenesis of Parkinson's disease.
Sherer TB, Betarbet R, Greenamyre JT.
PMID: 11569943 [PubMed - indexed for MEDLINE]
Related citations

1176. **1-Methyl-4-phenyl-pyridinium increases S-adenosyl-L-methionine dependent phospholipid methylation.**
Lee ES, Charlton CG.
Pharmacol Biochem Behav. 2001 Sep;70(1):105-14.
PMID: 11566147 [PubMed - indexed for MEDLINE]

Related citations

1177. **Parkinson disease: etiology, pathogenesis and future of gene therapy.**
Shastry BS.
Review.
PMID: 11535288 [PubMed - indexed for MEDLINE]

Related citations

1178. **Parkinsonism and occupational exposure to pesticides.**
Engel LS, Checkoway H, Keifer MC, Seixas NS, Longstreth WT Jr, Scott KC, Hudnell K, Anger WK, Camicioli R.

Related citations

1179. **Epidemiology of multiple system atrophy. ESGAP Consortium. European Study Group on Atypical Parkinsonisms.**
PMID: 11487219 [PubMed - indexed for MEDLINE]
Related citations

1180. **Pesticides directly accelerate the rate of alpha-synuclein fibril formation: a possible factor in Parkinson's disease.**

Related citations

1181. **Environmental risk factors and Parkinson's disease: a metaanalysis.**

Related citations

1182. **GAPDH knockdown rescues mesencephalic dopaminergic neurons from MPP+-induced apoptosis.**

Related citations

1183. **Release of dopamine by perfusion with 1-methyl-4-phenylpyridinium ion (MPP(+)) into the striatum is associated with hydroxyl free radical generation.**

Related citations

1184. **Autism and Parkinson's disease.**
1185. **Decreased expression of the NADH:ubiquinone oxidoreductase (complex I) subunit 4 in 1-methyl-4-phenylpyridinium -treated human neuroblastoma SH-SY5Y cells.**
Conn KJ, Ullman MD, Eisenhauer PB, Fine RE, Wells JM.
PMID: 11406316 [PubMed - indexed for MEDLINE]

1186. **Effect of antioxidants on L-glutamate and N-methyl-4-phenylpyridinium ion induced-neurotoxicity in PC12 cells.**
Mazzio E, Huber J, Darling S, Harris N, Soliman KF.
PMID: 11405259 [PubMed - indexed for MEDLINE]

1187. **Allopurinol suppresses paranonylphenol and 1-methyl-4-phenylpyridinium ion (MPP(+))-induced hydroxyl radical generation in rat striatum.**
Obata T, Kubota S, Yamanaka Y.
PMID: 11403945 [PubMed - indexed for MEDLINE]

1188. **Parkinsonism after glycine-derivate exposure.**
Barbosa ER, Leiros da Costa MD, Bacheschi LA, Scaff M, Leite CC.
PMID: 11391760 [PubMed - indexed for MEDLINE]
Related citations

1189. Nitric oxide enhances MPP(+) -induced hydroxyl radical generation via depolarization activated nitric oxide synthase in rat striatum.
Obata T, Yamanaka Y.
PMID: 11384616 [PubMed - indexed for MEDLINE]

Related citations

1190. A case-control study of Parkinson's disease in urban population of southern Israel.
Herishanu YO, Medvedovski M, Goldsmith JR, Kordysh E.
PMID: 11383940 [PubMed - indexed for MEDLINE]

Related citations

1191. Parkinson's disease, pesticides and mitochondrial dysfunction.
Jenner P.
PMID: 11311359 [PubMed - indexed for MEDLINE]

Related citations

1192. Strain-dependent susceptibility to MPTP and MPP(+) -induced parkinsonism is determined by glia.
Smeyne M, Goloubeva O, Smeyne RJ.
PMID: 11307156 [PubMed - indexed for MEDLINE]

Related citations

1193. Selective dopaminergic vulnerability: 3,4-dihydroxyphenylacetaldehyde targets mitochondria.
Kristal BS, Conway AD, Brown AM,
Related citations

1194. **Neurotoxicity of the organochlorine insecticide heptachlor to murine striatal dopaminergic pathways.**
Related citations

1195. **Prosaptide D5, a retro-inverso 11-mer peptidomimetic, rescued dopaminergic neurons in a model of Parkinson's disease.**
Related citations

1196. **L-Deprenyl prevents the cell hypoxia induced by dopaminergic neurotoxins, MPP(+) and beta-carbolinium: a microdialysis study in rats.**
Related citations

1197. **Attenuation of paraquat-induced dopaminergic toxicity on the substantia nigra by (-)-deprenyl in vivo.**
Liou HH, Chen RC, Chen TH, Tsai YF, Tsai MC.
PMID: 11264021 [PubMed - indexed for MEDLINE]

Related citations

1198. Is Bax a mitochondrial mediator in apoptotic death of dopaminergic neurons in Parkinson's disease?
Hartmann A, Michel PP, Troade JD, Mouatt-Prigent A, Faucheux BA, Ruberg M, Agid Y, Hirsch EC.
PMID: 11259496 [PubMed - indexed for MEDLINE]

Related citations

1199. [Parkinsonism induced by MPTP and free radical generation].
Obata T, Yamanaka Y.
PMID: 11233301 [PubMed - indexed for MEDLINE]

Related citations

1200. Low concentrations of 1-methyl-4-phenylpyridinium ion induce caspase-mediated apoptosis in human SH-SY5Y neuroblastoma cells.
Gómez C, Reiriz J, Piqué M, Gil J, Ferrer I, Ambrosio S.
PMID: 11223917 [PubMed - indexed for MEDLINE]

Related citations

1201. Rats and risk.
Morris S, Powell D.
PMID: 11214155 [PubMed - indexed for MEDLINE]
Related citations

Helmuth L.
No abstract available.
PMID: 11184997 [PubMed - indexed for MEDLINE]
Related citations

1203. Dopaminergic cell death induced by MPP(+), oxidant and specific neurotoxicants shares the common molecular mechanism.
Chun HS, Gibson GE, DeGiorgio LA, Zhang H, Kidd VJ, Son JH.
PMID: 11181820 [PubMed - indexed for MEDLINE]
Related citations

1204. Effect of the overexpression of wild-type or mutant alpha-synuclein on cell susceptibility to insult.
Lee M, Hyun D, Halliwell B, Jenner P.
PMID: 11181819 [PubMed - indexed for MEDLINE]
Related citations

1205. Inhibition of the cyclooxygenase isoenzymes COX-1 and COX-2 provide neuroprotection in the MPTP-mouse model of Parkinson's disease.
Teismann P, Ferger B.
PMID: 11180504 [PubMed - indexed for MEDLINE]
Related citations

1206. Chronic reduction in complex I function alters calcium signaling in SH-SY5Y neuroblastoma cells.
Sherer TB, Trimmer PA, Borland K,
Related citations

1207. Pesticides and parkinsonism: is there an etiological link?
PMID: 11148671 [PubMed - indexed for MEDLINE]
Related citations

1208. Mitochondria deficient in complex I activity are depolarized by hydrogen peroxide in nerve terminals: relevance to Parkinson's disease.
PMID: 11146003 [PubMed - indexed for MEDLINE]
Related citations

1209. Hepatic disposition of neurotoxins and pesticides.
PMID: 11140828 [PubMed - indexed for MEDLINE]
Related citations

1210. CGP 3466 protects dopaminergic neurons in lesion models of Parkinson's disease.
PMID: 11138845 [PubMed - indexed for MEDLINE]
Related citations

1211. The neurobehavioral effects of subchronic manganese exposure in the presence and absence of pre-parkinsonism.
Witholt R, Gwiazda RH, Smith DR.
PMID: 11120391 [PubMed - indexed for MEDLINE]

Related citations

1212. Increased striatal dopamine turnover following acute administration of rotenone to mice.
Thiffault C, Langston JW, Di Monte DA.
PMID: 11102582 [PubMed - indexed for MEDLINE]

Related citations

1213. Chronic systemic pesticide exposure reproduces features of Parkinson's disease.
PMID: 11100151 [PubMed - indexed for MEDLINE]

Related citations

1214. A new link between pesticides and Parkinson's disease.
Giasson BI, Lee VM.
No abstract available.
PMID: 11100135 [PubMed - indexed for MEDLINE]

Related citations

1215. Pesticide use linked to Parkinson's disease.

Related citations

Related citations

Related citations

Related citations

235
1220. Effect of 1,25-dihydroxyvitamin D(3) on cultured mesencephalic dopaminergic neurons to the combined toxicity caused by L-buthionine sulfoximine and 1-methyl-4-phenylpyridine.
Shinpo K, Kikuchi S, Sasaki H, Moriwaka F, Tashiro K.
PMID: 11054806 [PubMed - indexed for MEDLINE]

1221. Paraoxonase polymorphisms, pesticide exposure and Parkinson's disease in a Caucasian population.
Taylor MC, Le Couteur DG, Mellick GD, Board PG.
PMID: 11041276 [PubMed - indexed for MEDLINE]

1222. Prevention of 1-methyl-4-phenylpyridinium- and 6-hydroxydopamine-induced nitration of tyrosine hydroxylase and neurotoxicity by EUK-134, a superoxide dismutase and catalase mimetic, in cultured dopaminergic neurons.
Pong K, Doctrow SR, Baudry M.
PMID: 11036157 [PubMed - indexed for MEDLINE]

1223. A meta-analysis of Parkinson's disease and exposure to pesticides.
Priyadarshi A, Khuder SA, Schaub EA, Shrivastava S.
Tüchsen F, Jensen AA.

1225. Extracellular accumulation of nitric oxide, hydrogen peroxide, and glutamate in astrocytic cultures following glutathione depletion, complex I inhibition, and/or lipopolysaccharide-induced activation.
McNaught KS, Jenner P.
PMID: 10974207 [PubMed - indexed for MEDLINE]

1226. Disrupted mitochondrial electron transport function increases expression of anti-apoptotic bcl-2 and bcl-X(L) proteins in SH-SY5Y neuroblastoma and in Parkinson disease cybrid cells through oxidative stress.
Veech GA, Dennis J, Keeney PM, Fall CP, Swerdlow RH, Parker WD Jr, Bennett JP Jr.
PMID: 10972966 [PubMed - indexed for MEDLINE]

1227. The parkinsonism-inducing drug 1-methyl-4-phenylpyridinium triggers intracellular dopamine oxidation.
novel mechanism of toxicity.
Lotharius J, O'Malley KL.
Related citations

1228. MPP(+) increases the vulnerability to oxidative stress rather than directly mediating oxidative damage in human neuroblastoma cells.
Lee HS, Park CW, Kim YS.
PMID: 10964495 [PubMed - indexed for MEDLINE]
Related citations

1229. Protective effect of melatonin against the 1-methyl-4-phenylpyridinium-induced inhibition of complex I of the mitochondrial respiratory chain.
Absi E, Ayala A, Machado A, Parrado J.
PMID: 10949539 [PubMed - indexed for MEDLINE]
Related citations

1230. Potentiated and preferential effects of combined paraquat and maneb on nigrostriatal dopamine systems: environmental risk factors for Parkinson's disease?
Thiruchelvam M, Brockel BJ, Richfield EK, Baggs RB, Cory-Slechta DA.
PMID: 10930548 [PubMed - indexed for MEDLINE]
Related citations

1231. The selective toxicity of 1-methyl-4-phenylpyridinium to dopaminergic neurons: the role of mitochondrial complex I and reactive oxygen species revisited.
Ethylenebisdithiocarbamate enhances MPTP-induced striatal dopamine depletion in mice.
McGrew DM, Irwin I, Langston JW.
PMID: 10894120 [PubMed - indexed for MEDLINE]

Dopamine transporter function assessed by antisense knockdown in the rat: protection from dopamine neurotoxicity.
Van Kampen JM, McGeer EG, Stoessl AJ.
PMID: 10881039 [PubMed - indexed for MEDLINE]

Exposure to home pesticides linked to Parkinson disease.
Stephenson J.
PMID: 10865282 [PubMed - indexed for MEDLINE]

Effect of MAO-B inhibitors on MPP+ toxicity in Vivo.
Wu RM, Chen RC, Chiuheh CC.
PMID: 10863544 [PubMed - indexed for MEDLINE]
1236. **3,4-Dihydroxyphenylacetaldehyde potentiates the toxic effects of metabolic stress in PC12 cells.**
Related citations

1237. **Manganese: brain transport and emerging research needs.**
Related citations

1238. **Estrogen reduces acute striatal dopamine responses in vivo to the neurotoxin MPP+ in female, but not male rats.**
Related citations

1239. **6-Hydroxydopamine toxicity towards human SH-SY5Y dopaminergic neuroblastoma cells: independent of mitochondrial energy metabolism.**
Related citations

1240. **Inhibition of neuronal nitric oxide synthase protects against MPTP toxicity.**
Ritz B, Yu F.
Related citations

Kashiwaya Y, Takeshima T, Mori N, Nakashima K, Clarke K, Veech RL.
Related citations

1243. *Enhanced vulnerability to oxidative stress by alpha-synuclein mutations and C-terminal truncation.*
Kanda S, Bishop JF, Eglitis MA, Yang Y, Mouradian MM.
PMID: 10799759 [PubMed - indexed for MEDLINE]
Related citations

1244. *Metabolic stress in PC12 cells induces the formation of the endogenous dopaminergic neurotoxin, 3,4-dihydroxyphenylacetaldehyde.*
PMID: 10797558 [PubMed - indexed for MEDLINE]
1245. **Vulnerability to pesticide neurotoxicity is a lifetime issue.**
Weiss B.
PMID: 10794386 [PubMed - indexed for MEDLINE]

1246. **Vasoactive intestinal peptide (VIP) prevents neurotoxicity in neuronal cultures: relevance to neuroprotection in Parkinson's disease.**
Offen D, Sherki Y, Melamed E, Fridkin M, Brenneman DE, Gozes I.
PMID: 10784133 [PubMed - indexed for MEDLINE]

1247. **[Pesticide poisoning].**
Harry P.
French.
PMID: 10748667 [PubMed - indexed for MEDLINE]

1248. **Interaction among mitochondria, mitogen-activated protein kinases, and nuclear factor-kappaB in cellular models of Parkinson's disease.**
PMID: 10737593 [PubMed - indexed for MEDLINE]

1249. **Effect of MPTP on brain mitochondrial H2O2 and ATP production and on dopamine and DOPAC in the striatum.**
Fabre E, Monserrat J, Herrero A, Barja G, Leret ML.
PMID: 10731084 [PubMed - indexed for MEDLINE]

Related citations

1250. The protective effect of riluzole in the MPTP model of Parkinson's disease in mice is not due to a decrease in MPP(+) accumulation.
Boireau A, Dubedat P, Bordier F, Imperato A, Moussaoui S.
PMID: 10727711 [PubMed - indexed for MEDLINE]

Related citations

1251. Potassium chloride depolarization enhances MPP+-induced hydroxyl radical generation in the rat striatum.
Obata T, Aomine M, Yamanaka Y.
PMID: 10678780 [PubMed - indexed for MEDLINE]

Related citations

1252. Organochlorine insecticides in substantia nigra in Parkinson's disease.
Corrigan FM, Wienburg CL, Shore RF, Daniel SE, Mann D.
PMID: 10706031 [PubMed - indexed for MEDLINE]

Related citations

1253. MPP(+)‐induced mitochondrial dysfunction is potentiated by dopamine.
Boada J, Cutillas B, Roig T, Bermúdez J, Ambrosio S.
1254. 1-Methyl-6,7-dihydroxy-1,2,3,4-tetrahydroisoquinoline (salsolinol) is toxic to dopaminergic neuroblastoma SH-SY5Y cells via impairment of cellular energy metabolism.

Storch A, Kaftan A, Burkhardt K, Schwarz J.

PMID: 10650131 [PubMed - indexed for MEDLINE]

1255. The nigrostriatal dopaminergic system as a preferential target of repeated exposures to combined paraquat and maneb: implications for Parkinson's disease.

Thiruchelvam M, Richfield EK, Baggs RB, Tank AW, Cory-Slechta DA.

PMID: 11124998 [PubMed - indexed for MEDLINE] Free Article

1256. Pesticide study aids Parkinson research.

Friedrich MJ.

PMID: 10605962 [PubMed - indexed for MEDLINE]

1257. The D-loop structure of human mtDNA is destabilized directly by 1-methyl-4-phenylpyridinium ion (MPP+), a parkinsonism-causing toxin.

Umeda S, Muta T, Ohsato T, Takamatsu C, Hamasaki N, Kang D.

PMID: 10601867 [PubMed - indexed for
Environmental risk factors in Parkinson's disease.
Kuopio AM, Marttila RJ, Helenius H, Rinne UK.
PMID: 10584666 [PubMed - indexed for MEDLINE]

Environmental, medical, and family history risk factors for Parkinson's disease: a New England-based case control study.
Taylor CA, Saint-Hilaire MH, Cupples LA, Thomas CA, Burchard AE, Feldman RG, Myers RH.
PMID: 10581500 [PubMed - indexed for MEDLINE]

Altered glial function causes neuronal death and increases neuronal susceptibility to 1-methyl-4-phenylpyridinium- and 6-hydroxydopamine-induced toxicity in astrocytic/ventral mesencephalic cocultures.
McNaught KS, Jenner P.
PMID: 10582607 [PubMed - indexed for MEDLINE]

Local striatal infusion of MPP+ does not result in increased hydroxylation after systemic administration of 4-hydroxybenzoate.
Ste-Marie L, Vachon L, Bémeur C, Lambert J, Montgomery J.
Free Radic Biol Med. 1999 Nov;27(9-
PMID: 10569632 [PubMed - indexed for MEDLINE]
Related citations

1262. Methyl-4-phenyl-2,3-dihydropyridinium is transformed by ubiquinone to the selective nigrostriatal toxin 1-methyl-4-phenylpyridinium.
Shi H, Noguchi N, Xu Y, Niki E.
PMID: 10567696 [PubMed - indexed for MEDLINE]
Related citations

1263. Multiple antioxidants in the prevention and treatment of Parkinson's disease.
Prasad KN, Cole WC, Kumar B.
Related citations

1264. Inhibitors of mitochondrial respiration, iron (II), and hydroxyl radical evoke release and extracellular hydrolysis of glutathione in rat striatum and substantia nigra: potential implications to Parkinson's disease.
Han J, Cheng FC, Yang Z, Dryhurst G.
PMID: 10501216 [PubMed - indexed for MEDLINE]
Related citations

1265. Heptachlor alters expression and function of dopamine transporters.
Miller GW, Kirby ML, Levey AI, Bloomquist JR.
PMID: 10499361 [PubMed - indexed for MEDLINE]
Werneck AL, Alvarenga H.
PMID: 10450337 [PubMed-indexed for MEDLINE]

Joost O, Taylor CA, Thomas CA, Cupples LA, Saint-Hilaire MH, Feldman RG, Baldwin CT, Myers RH.
PMID: 10435495 [PubMed-indexed for MEDLINE]

1268. The non-NMDA glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione and 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline, but not NMDA antagonists, block the intrastriatal neurotoxic effect of MPP+.
Merino M, Vizuete ML, Cano J, Machado A.
PMID: 10428073 [PubMed-indexed for MEDLINE]

Wong SS, Li RH, Stadlin A.
Brain Res. 1999 Jul 31;836(1-2):237-44.
PMID: 10415427 [PubMed-indexed for MEDLINE]
1270. Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson's disease.
Duan W, Mattson MP.
PMID: 10398297 [PubMed - indexed for MEDLINE]
Related citations

1271. MPP+ inhibits proliferation of PC12 cells by a p21(WAF1/Cip1)-dependent pathway and induces cell death in cells lacking p21(WAF1/Cip1).
PMID: 10388522 [PubMed - indexed for MEDLINE]
Related citations

1272. Depolarization of in situ mitochondria due to hydrogen peroxide-induced oxidative stress in nerve terminals: inhibition of alpha-ketoglutarate dehydrogenase.
Chinopoulos C, Tretter L, Adam-Vizi V.
PMID: 10386974 [PubMed - indexed for MEDLINE]
Related citations

1273. Studies on the pyrrolinone metabolites derived from the tobacco alkaloid 1-methyl-2-(3-pyridinyl)pyrrole (beta-nicotyrine).
1274. **Pesticides and Parkinson's disease.**
Le Couteur DG, McLean AJ, Taylor MC, Woodham BL, Board PG.
PMID: 10349500 [PubMed - indexed for MEDLINE]

1275. **Reserpine prevents hydroxyl radical formation by MPP+ in rat striatum.**
Obata T.
PMID: 10320725 [PubMed - indexed for MEDLINE]

1276. **Poly(ADP-ribose) polymerase activation mediates 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism.**

1277. **Epidemiologic approaches to the study of Parkinson's disease etiology.**
Checkoway H, Nelson LM.
PMID: 10230846 [PubMed - indexed for MEDLINE]
1278. **Acute and reversible parkinsonism due to organophosphate pesticide intoxication: five cases.**
Bhatt MH, Elias MA, Mankodi AK.
PMID: 10227636 [PubMed - indexed for MEDLINE]
Related citations

1279. **Creatine and cyclocreatine attenuate MPTP neurotoxicity.**
PMID: 10222117 [PubMed - indexed for MEDLINE]
Related citations

1280. **Influence of MPP+ on the state of tubulin polymerisation in NGF-differentiated PC12 cells.**
Cappelletti G, Maggioni MG, Maci R.
PMID: 10213472 [PubMed - indexed for MEDLINE]
Related citations

1281. **Paraquat induced activation of transcription factor AP-1 and apoptosis in PC12 cells.**
Li X, Sun AY.
PMID: 10195331 [PubMed - indexed for MEDLINE]
Related citations

1282. **Paraquat elicited neurobehavioral syndrome caused by dopaminergic neuron loss.**
Brooks AI, Chadwick CA, Gelbard HA, Cory-Slechta DA, Federoff HJ.
PMID: 10095006 [PubMed - indexed for
1283. Health effects of chronic high exposure to hexachlorobenzene in a general population sample.
Sala M, Sunyer J, Otero R, Santiago-Silva M, Ozalla D, Herrero C, To-Figueroas J, Kogevinas M, Anto JM, Camps C, Grimalt J.
PMID: 10094287 [PubMed - indexed for MEDLINE]

1284. Characterization and time course of MPP+ -induced apoptosis in human SH-SY5Y neuroblastoma cells.
Fall CP, Bennett JP Jr.
PMID: 10082084 [PubMed - indexed for MEDLINE]

1285. Transient severe parkinsonism after acute organophosphate poisoning.
Müller-Vahl KR, Kolbe H, Dengler R.

1286. Gene-toxicant link to Parkinson's disease.
[No authors listed]

1287. Biosynthesis of a parkinsonism-preventing substance, 1-methyl-1,2,3,4-
tetrahydroisoquinoline, is inhibited by parkinsonism-inducing compounds in rat brain mitochondrial fraction.
PMID: 10025582 [PubMed - indexed for MEDLINE]
Related citations

1288. Glutathione transferase polymorphism and Parkinson's disease.
PMID: 10023978 [PubMed - indexed for MEDLINE]
Related citations

1289. Alternative sulfonylurea receptor expression defines metabolic sensitivity of K-ATP channels in dopaminergic midbrain neurons.
Related citations

1290. The parkinsonian neurotoxin MPP+ opens the mitochondrial permeability transition pore and releases cytochrome c in isolated mitochondria via an oxidative mechanism.
PMID: 9989245 [PubMed - indexed for MEDLINE]
Related citations

1291. Distinct mechanisms underlie neurotoxin-mediated cell death in cultured dopaminergic neurons.

1296. Genetic epidemiology of Parkinson's disease.
Payami H, Zareparsi S.
PMID: 9877530 [PubMed - indexed for MEDLINE]

1297. [Delayed effects of organochlorine pesticides in man],
Nunes MV, Tajara EH.
PMID: 9876430 [PubMed - indexed for MEDLINE]

1298. Conformationally restricted analogues of nicotine and anabasine.
PMID: 9873508 [PubMed - indexed for MEDLINE]

1299. Neuroprotection and neuronal differentiation studies using substantia nigra dopaminergic cells derived from transgenic mouse embryos.
Son JH, Chun HS, Joh TH, Cho S, Conti B, Lee JW.
1300. Mice deficient in group IV cytosolic phospholipase A2 are resistant to MPTP neurotoxicity.
Klivenyi P, Beal MF, Ferrante RJ, Andreassen OA, Wermer M, Chin MR, Bonventre JV.
PMID: 9832165 [PubMed - indexed for MEDLINE]
Related citations

1301. Paraquat-induced cell death in PC12 cells.
Yang WL, Sun AY.
PMID: 9814549 [PubMed - indexed for MEDLINE]
Related citations

1302. Genetic and environmental risk factors for Parkinson's disease in a Chinese population.
Chan DK, Woo J, Ho SC, Pang CP, Law LK, Ng PW, Hung WT, Kwok T, Hui E, Orr K, Leung MF, Kay R.
Related citations

1303. [Neurosomnology: in the cutting-edge of neurology].
Culebras A.
PMID: 9810796 [PubMed - indexed for MEDLINE]
Related citations

1304. Parkinson's disease, pesticides, and glutathione transferase polymorphisms.
Menegon A, Board PG, Blackburn AC,

Epidemiology versus genetics in Parkinson's disease: progress in resolving an age-old debate.
Langston JW.
PMID: 9749572 [PubMed - indexed for MEDLINE]
Related citations

A case-control study of occupational and environmental risk factors for Parkinson's disease in the Emilia-Romagna region of Italy.
PMID: 9745932 [PubMed - indexed for MEDLINE]
Related citations

Micronuclei analysis in lymphocytes of pesticide sprayers from Concepción, Chile.
Venegas W, Zapata I, Carbonell E, Marcos R.
PMID: 9728796 [PubMed - indexed for MEDLINE]
Related citations

Catechol is the major product of salicylate hydroxylation in 1-methyl-4-phenylpyridinium ion treated rats.
Sam E, Sarre S, Michotte Y, Verbeke N.
PMID: 9725471 [PubMed - indexed for MEDLINE]
Related citations

7-Nitroindazole prevents dopamine depletion caused by low concentrations
of MPP+ in rat striatal slices.
Cutillas B, Espejo M, Ambrosio S.
PMID: 9694040 [PubMed - indexed for MEDLINE]
Related citations

1314. L1 neural cell adhesion molecule is a survival factor for fetal dopaminergic neurons.
Hulley P, Schachner M, Lubbert H.
PMID: 9671969 [PubMed - indexed for MEDLINE]
Related citations

1315. Structural significance of azaheterocyclic amines related to Parkinson's disease for dopamine transporter.
Eur J Pharmacol. 1998 May 1;348(1):77-84.
PMID: 9650834 [PubMed - indexed for MEDLINE]
Related citations

1316. Pramipexole reduces reactive oxygen species production in vivo and in vitro and inhibits the mitochondrial permeability transition produced by the parkinsonian neurotoxin methylpyridinium ion.
Cassarino DS, Fall CP, Smith TS, Bennett JP Jr.
PMID: 9648878 [PubMed - indexed for MEDLINE]
Related citations

1317. Genetic and environmental risk factors
in Parkinson's disease.
Veldman BA, Wijn AM, Knoers N, Praamstra P, Horstink MW.
PMID: 9637199 [PubMed - indexed for MEDLINE]
Related citations

1318. Melatonin protects nigral dopaminergic neurons from 1-methyl-4-phenylpyridinium (MPP+) neurotoxicity in rats.
PMID: 9605485 [PubMed - indexed for MEDLINE]
Related citations

1319. A case-referent study of extrapyramidal signs (preparkinsonism) in rural communities of Israel.
Herishanu YO, Kordysh E, Goldsmith JR.
PMID: 9604134 [PubMed - indexed for MEDLINE]
Related citations

1320. The risk of Parkinson's disease with exposure to pesticides, farming, well water, and rural living.
Gorell JM, Johnson CC, Rybicki BA, Peterson EL, Richardson RJ.
PMID: 9595985 [PubMed - indexed for MEDLINE]
Related citations

Related citations

Related citations

Related citations

Related citations

The role of glutathione in dopaminergic neuronal survival.
Nakamura K, Wang W, Kang UJ.
PMID: 9349527 [PubMed - indexed for MEDLINE]

Quantitative study of mitochondrial complex I in platelets of parkinsonian patients.
Blandini F, Nappi G, Greenamyre JT.
PMID: 9452319 [PubMed - indexed for MEDLINE]

Metabolic inhibition enhances selective toxicity of L-DOPA toward mesencephalic dopamine neurons in vitro.
Nakao N, Nakai K, Itakura T.
PMID: 9449429 [PubMed - indexed for MEDLINE]

Free radical scavengers protect dopaminergic cell lines from apoptosis induced by complex I inhibitors.
Seaton TA, Cooper JM, Schapira AH.
PMID: 9449419 [PubMed - indexed for MEDLINE]

Environmental risk factors for Parkinson’s disease in an urban multiethnic community.
Marder K, Logroscino G, Alfaro B, Mejia H, Halim A, Louis E, Cote L,
Mayeux R.
PMID: 9443493 [PubMed - indexed for MEDLINE]
Related citations

1331. **Comparison of key steps in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity in rodents.**
Sundström E, Samuelsson EB.
PMID: 9396088 [PubMed - indexed for MEDLINE]
Related citations

1332. **Rescue of mesencephalic dopamine neurons by anticancer drug cytosine arabinoside.**
Michel PP, Ruberg M, Agid Y.
PMID: 9326279 [PubMed - indexed for MEDLINE]
Related citations

1333. **Estrogen as a neuromodulator of MPTP-induced neurotoxicity: effects upon striatal dopamine release.**
Disshon KA, Dluzen DE.
PMID: 9295188 [PubMed - indexed for MEDLINE]
Related citations

1334. **Environmental risk factors and Parkinson's disease: a case-control study in Taiwan.**
Liou HH, Tsai MC, Chen CJ, Jeng JS, Chang YC, Chen SY, Chen RC.
PMID: 9191770 [PubMed - indexed for MEDLINE]
Related citations

1335. **1-Methyl-4-phenyl-1,2,3,6-**
tetrahydropyridine (MPTP) decreases glutamate uptake in cultured astrocytes.
Hazell AS, Itzhak Y, Liu H, Norenberg MD.
PMID: 9109551 [PubMed - indexed for MEDLINE]
Related citations

1336. Neurotoxic effects of papaverine, tetrahydropapaverine and dimethoxyphenylethylamine on dopaminergic neurons in ventral mesencephalic-striatal co-culture.
Goto K, Mochizuki H, Hattori T, Nakamura N, Mizuno Y.
PMID: 9134983 [PubMed - indexed for MEDLINE]
Related citations

1337. The content of intracellular mitochondrial DNA is decreased by 1-methyl-4-phenylpyridinium ion (MPP+).
Miyako K, Kai Y, Irie T, Takeshige K, Kang D.
Related citations

1338. Systemic administration of rotenone produces selective damage in the striatum and globus pallidus, but not in the substantia nigra.
Ferrante RJ, Schulz JB, Kowall NW, Beal MF.
PMID: 9125443 [PubMed - indexed for MEDLINE]
Related citations

1339. The epidemiology of Parkinson's disease.
Ben-Shlomo Y.
Baillieres Clin Neurol. 1997
Apr;6(1):55-68. Review.
PMID: 9426868 [PubMed - indexed for MEDLINE]
Related citations
1340. Mitochondrial dysfunction in neurodegeneration.
Cooper JM, Schapira AH.
J Bioenerg Biomembr. 1997
Apr;29(2):175-83. Review.
PMID: 9239542 [PubMed - indexed for MEDLINE]
Related citations
1341. Basic toxicology of pesticides.
Costa LG.
PMID: 9220485 [PubMed - indexed for MEDLINE]
Related citations
1342. Protein from chromaffin granules promotes survival of mesencephalic dopaminergic neurons by an EGF-receptor ligand-mediated mechanism.
Krieglstein K, Unsicker K.
PMID: 9086178 [PubMed - indexed for MEDLINE]
Related citations
1343. Altered calcium homeostasis in cells transformed by mitochondria from individuals with Parkinson's disease.
Sheehan JP, Swerdlow RH, Parker WD, Miller SW, Davis RE, Tuttle JB.
PMID: 9048769 [PubMed - indexed for MEDLINE]
Related citations
1344. Alterations in the distribution of
glutathione in the substantia nigra in Parkinson's disease.
Pearce RK, Owen A, Daniel S, Jenner P, Marsden CD.
PMID: 9444566 [PubMed - indexed for MEDLINE]
Related citations

1345. Apoptosis in neurodegenerative disorders.
Mochizuki H, Mori H, Mizuno Y.
PMID: 9120413 [PubMed - indexed for MEDLINE]
Related citations

1346. Transgenic murine dopaminergic neurons expressing human Cu/Zn superoxide dismutase exhibit increased density in culture, but no resistance to methylphenylpyridinium-induced degeneration.
Sanchez-Ramos JR, Song S, Facca A, Basit A, Epstein CJ.
PMID: 8978710 [PubMed - indexed for MEDLINE]
Related citations

1347. L-deprenyl fails to protect mesencephalic dopamine neurons and PC12 cells from the neurotoxic effect of 1-methyl-4-phenylpyridinium ion.
Vaglini F, Pardini C, Cavalletti M, Maggio R, Corsini GU.
PMID: 9001706 [PubMed - indexed for MEDLINE]
Related citations

1348. Mechanism of resistance to NO-induced neurotoxicity in cultured rat dopaminergic neurons.

Related citations

Related citations

Related citations

Related citations

1352. Nigral cell loss produced by infusion of isoquinoline derivatives structurally related to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. McNaught KS, Thull U, Carrupt PA,
PMID: 8910905 [PubMed - indexed for MEDLINE]

Related citations

Related citations

PMID: 8687036 [PubMed - indexed for MEDLINE]

Related citations

Related citations

1356. Catecholamine transporters and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity: studies comparing the cloned human noradrenaline and human dopamine transporter.
Pfli C, Hornykiewicz O, Giros B, Caron MG.
PMID: 8667208 [PubMed - indexed for MEDLINE]

Related citations

1357. **Possible environmental, occupational, and other etiologic factors for Parkinson's disease: a case-control study in Germany.**
PMID: 8628466 [PubMed - indexed for MEDLINE]

Related citations

1358. **[Effect of active immunization with a serotonin-protein conjugate on development of experimental Parkinson's syndrome].**
Kryzhanovskiĭ GN, Trekova NA, Basharova LA, Vetrilé LA, Evseev VA.
PMID: 8829448 [PubMed - indexed for MEDLINE]

Related citations

1359. **Glutathione depletion potentiates MPTP and MPP+ toxicity in nigral dopaminergic neurones.**
PMID: 8724674 [PubMed - indexed for MEDLINE]

Related citations

1360. **Toxicity to PC12 cells of isoquinoline**
derivatives structurally related to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.

PMID: 8848276 [PubMed - indexed for MEDLINE]
Related citations

Barber KR, House P.
PMID: 10186648 [PubMed - indexed for MEDLINE]
Related citations

Galpern WR, Frim DM, Tatter SB, Altar CA, Beal MF, Isacson O.
PMID: 8689033 [PubMed - indexed for MEDLINE]
Related citations

1363. Increase in bax expression in substantia nigra following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment of mice.

Hassouna I, Wickert H, Zimmermann M, Gillardon F.
PMID: 8929984 [PubMed - indexed for MEDLINE]
Related citations

1364. Environment: seeking clues to
Parkinson's disease.
Butterfield PG.
PMID: 9256779 [PubMed - indexed for MEDLINE]
Related citations

Olanow CW.
PMID: 8988463 [PubMed - indexed for MEDLINE]
Related citations

1366. Methylphenylpyridium ion (MPP+) enhances glutamate-induced cytotoxicity against dopaminergic neurons in cultured rat mesencephalon.
PMID: 8838574 [PubMed - indexed for MEDLINE]
Related citations

1367. Uptake of 1-methyl-4-phenylpyridinium ion (MPP+) and ATP content in synaptosomes.
Matsunaga M, Shirane Y, Aiuchi T, Nakamura Y, Nakaya K.
PMID: 8820906 [PubMed - indexed for MEDLINE]
Related citations

1368. Glial cell line-derived neurotrophic factor exerts neurotrophic effects on dopaminergic neurons in vitro and promotes their survival and regrowth after damage by 1-methyl-4-phenylpyridinium.

Related citations

1369. **beta-Carbolinium cations, endogenous MPP+ analogs, in the lumbar cerebrospinal fluid of patients with Parkinson's disease.**

Related citations

1370. **Trophic and protective effects of growth/differentiation factor 5, a member of the transforming growth factor-beta superfamily, on midbrain dopaminergic neurons.**

Related citations

1371. **Chronic effects of single intrastriatal injections of 6-hydroxydopamine or 1-methyl-4-phenylpyridinium studied by microdialysis in freely moving rats.**

Related citations

1372. **Radical formation site of cerebral complex I and Parkinson's disease.**
Fukushima T, Tawara T, Isobe A, Hojo N, Shiwaku K, Yamane Y.
PMID: 8583507 [PubMed - indexed for MEDLINE]

Related citations

1373. Comparison of cytotoxicity of a quaternary pyridinium metabolite of haloperidol (HP+) with neurotoxin N-methyl-4-phenylpyridinium (MPP+) towards cultured dopaminergic neuroblastoma cells.
Fang J, Zuo D, Yu PH.
PMID: 8584620 [PubMed - indexed for MEDLINE]

Related citations

1374. Assay of [3H]dihydrorotenone binding to complex I in intact human platelets.
Blandini F, Greenamyre JT.
PMID: 8585613 [PubMed - indexed for MEDLINE]

Related citations

1375. Survival of and 1-methyl-4-phenylpyridinium (MPP+) neurotoxicity against dopaminergic neurons in coculture of rat mesencephalon with their target on non-target regions.
Akaneya Y, Takahashi M, Hatanaka H.
PMID: 7501301 [PubMed - indexed for MEDLINE]

Related citations

1376. A morphometric analysis of bipolar and multipolar TH-IR neurons treated with the neurotoxin MPP+ in co-cultures from mesencephalon and striatum of embryonic C57BL/6 mice.
Koutsilieri E, Chen TS, Kruzik P, Rausch WD.
PMID: 7650755 [PubMed - indexed for MEDLINE]
Related citations

1377. Inhibition of alpha-ketoglutarate dehydrogenase by isoquinoline derivatives structurally related to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).
PMID: 7662887 [PubMed - indexed for MEDLINE]
Related citations

1378. Effects of agricultural work and other proxy-derived case-control data on Parkinson's disease risk estimates.
Semchuk KM, Love EJ.
PMID: 7709917 [PubMed - indexed for MEDLINE]
Related citations

1379. The use of plants for environmental monitoring and assessment.
Wang W, Freemark K.
PMID: 7541343 [PubMed - indexed for MEDLINE]
Related citations

1380. Methyl-beta-carbolinium analogs of MPP+ cause nigrostriatal toxicity after substantia nigra injections in rats.
Brain Res. 1995 Mar 27;675(1-2):279-
Biphasic effects of MPP+, a possible parkinsonism inducer, on dopamine content and tyrosine hydroxylase mRNA expression in PC12 cells.
Itano Y, Kitamura Y, Nomura Y.
PMID: 7599536 [PubMed-indexed for MEDLINE]

Cerebrospinal dopamine metabolites in rats after intrastriatal administration of 6-hydroxydopamine or 1-methyl-4-phenylpyridinium ion.
Espino A, Llorens J, Calopa M, Bartrons R, Rodriguez-Farré E, Ambrosio S.
PMID: 7712161 [PubMed-indexed for MEDLINE]

MPP+ selectively affects calcium homeostasis in mesencephalic cell cultures from embryonal C57/Bi6 mice.
Chen TS, Koutsilieri E, Rausch WD.
PMID: 8962685 [PubMed-indexed for MEDLINE]

1-Trichloromethyl-1,2,3,4-tetrahydro-beta-carboline, a new inhibitor of complex I.
Janetzky B, God R, Bringmann G, Reichmann H.
PMID: 8821063 [PubMed-indexed for MEDLINE]
Related citations

1385. **Cyclic AMP promotes the survival of dopaminergic neurons in vitro and protects them from the toxic effects of MPP+.**
Hulley P, Hartikka J, Lübbert H.
PMID: 8821058 [PubMed - indexed for MEDLINE]

Related citations

1386. **Neuronal protective and rescue effects of deprenyl against MPP+ dopaminergic toxicity.**
Wu RM, Murphy DL, Chiueh CC.
PMID: 8748663 [PubMed - indexed for MEDLINE]

Related citations

1387. **Synthesis of (2-[11C]methoxy)rotenone, a marker of mitochondrial complex I activity.**
Charalambous A, Mangner TJ, Kilbourn MR.
PMID: 7735172 [PubMed - indexed for MEDLINE]

Related citations

1388. **Antioxidant mechanism and protection of nigral neurons against MPP+ toxicity by deprenyl (selegiline).**
Wu RM, Mohanakumar KP, Murphy DL, Chiueh CC.
PMID: 7832430 [PubMed - indexed for MEDLINE]

Related citations

1389. **Complex I inhibitors induce dose-dependent apoptosis in PC12 cells:**

275
relevance to Parkinson's disease.
Hartley A, Stone JM, Heron C, Cooper JM, Schapira AH.
PMID: 7931358 [PubMed - indexed for MEDLINE]
Related citations
1390. 1-Methyl-4-phenylpyridinium (MPP+)-induced cell death in PC12 cells: inhibitory effects of several drugs.
Itano Y, Kitamura Y, Nomura Y.
PMID: 7849570 [PubMed - indexed for MEDLINE]
Related citations
1391. Features of the parkinsonian syndrome induced experimentally by a deficit of nigrostriatal dopamine and stimulation of cholinergic neurons of the caudate nuclei.
Kryzhanovskii GN, Atadzhanov MA, Voronina TA, Nerobkova LN.
PMID: 7715769 [PubMed - indexed for MEDLINE]
Related citations
1392. Riluzole and experimental parkinsonism: partial antagonism of MPP(+) induced increase in striatal extracellular dopamine in rats in vivo.
Boireau A, Miquet JM, Dubédat P, Meunier M, Doble A.
PMID: 7865766 [PubMed - indexed for MEDLINE]
Related citations
Related citations

Related citations

Related citations

Related citations

1397. Reliability of environmental and occupational exposure data provided by surrogate respondents in a case-control study of Parkinson's disease. Wang FL, Semchuk KM, Love EJ.
1398. Parkinson's disease and brain levels of organochlorine pesticides.
Fleming L, Mann JB, Bean J, Briggle T, Sanchez-Ramos JR.
PMID: 7517654 [PubMed - indexed for MEDLINE]
Related citations

1399. Implanted fibroblasts genetically engineered to produce brain-derived neurotrophic factor prevent 1-methyl-4-phenylpyridinium toxicity to dopaminergic neurons in the rat.
Frim DM, Uhler TA, Galpern WR, Beal MF, Breakefield XO, Isacson O.
Related citations

1400. In brown Norway rats, MPP+ is accumulated in the nigrostriatal dopaminergic terminals but it is not neurotoxic: a model of natural resistance to MPTP toxicity.
Zuddas A, Fascetti F, Corsini GU, Piccardi MP.
PMID: 8200437 [PubMed - indexed for MEDLINE]
Related citations

Cobuzzi RJ Jr, Neafsey EJ, Collins MA.
PMID: 8133278 [PubMed - indexed for MEDLINE]
Related citations

1402. Risk-factors for Parkinson's disease: case-control study in the province of Cáceres, Spain.
Morano A, Jiménez-Jiménez FJ, Molina JA, Antolín MA.
PMID: 8030397 [PubMed - indexed for MEDLINE]
Related citations

1403. A case-control study of Parkinson's disease in a horticultural region of British Columbia.
Hertzman C, Wiens M, Snow B, Kelly S, Calne D.
PMID: 8139607 [PubMed - indexed for MEDLINE]
Related citations

1404. Glutamatergic drugs in Parkinson's disease.
Lange KW, Riederer P.
PMID: 7997066 [PubMed - indexed for MEDLINE]
Related citations

1405. Neurotrophin-4/5 is a survival factor for embryonic midbrain dopaminergic neurons in enriched cultures.
Hynes MA, Poulsen K, Armanini M, Berkemeier L, Phillips H, Rosenthal A.
PMID: 7908342 [PubMed - indexed for MEDLINE]
Related citations
1406. [Serotonin antibodies and their possible role in parkinsonism].
Kryzhanovskii GN, Man'kovskii NB, Karaban' IN, Magaeva SV, Trekova NA, Vetrilé LA, Basharova LA, Atadzhanov MA, Golubev KM.
PMID: 7900444 [PubMed - indexed for MEDLINE]
Related citations

1407. Cerebrospinal monoamine metabolites and amino acid content in patients with parkinsonian syndrome and rats lesioned with MPP+.
Espino A, Ambrosio S, Bartrons R, Bendahan G, Calopa M.
PMID: 7710669 [PubMed - indexed for MEDLINE]
Related citations

1408. Dopamine transporter expression confers cytotoxicity to low doses of the parkinsonism-inducing neurotoxin 1-methyl-4-phenylpyridinium.
Pifl C, Giros B, Caron MG.
Related citations

1409. Advances in our understanding of the mechanisms of the neurotoxicity of MPTP and related compounds.
Tipton KF, Singer TP.
PMID: 8376979 [PubMed - indexed for MEDLINE]
Related citations

1410. Acetylcholinesterase inhibition by 1-
methyl-4-phenylpyridinium ion, a bioactivated metabolite of MPTP.
Zang LY, Misra HP.
Mol Cell Biochem. 1993 Sep 22;126(2):93-100.
PMID: 8302294 [PubMed - indexed for MEDLINE]

Related citations

1411. Risk factors for Parkinson's disease.
Hubble JP, Cao T, Hassanein RE, Neuberger JS, Koller WC.
PMID: 8414014 [PubMed - indexed for MEDLINE]

Related citations

Golbe LI.
PMID: 8414005 [PubMed - indexed for MEDLINE]

Related citations

1413. Dopamine transporter mutants selectively enhance MPP+ transport.
Kitayama S, Wang JB, Uhl GR.
PMID: 8310426 [PubMed - indexed for MEDLINE]

Related citations

Willets JM, Lunec J, Williams AC, Griffiths HR.
PMID: 8224447 [PubMed - indexed for MEDLINE]

Related citations
1415. Parkinson's disease: a test of the multifactorial etiologic hypothesis.
PMID: 8170564 [PubMed - indexed for MEDLINE]
Related citations

PMID: 8170560 [PubMed - indexed for MEDLINE]
Related citations

1417. [Role of the striatal serotonergic apparatus in Parkinsonian syndrome].
PMID: 8043821 [PubMed - indexed for MEDLINE]
Related citations

1418. NMDA antagonists partially protect against MPTP induced neurotoxicity in mice.
PMID: 8499594 [PubMed - indexed for MEDLINE]
Related citations

1419. Metabolic aspects of the behavior of MPTP and some analogues.
PMID: 8420134 [PubMed - indexed for MEDLINE]
1420. [The characteristics of a parkinsonian syndrome induced in an experiment by a deficiency of nigrostriatal dopamine and by stimulation of the cholinergic neurons of the caudate nucleus].
Kryzhanovskii GN, Atadzhanov MA, Voronina TA, Nerobkova LN.
PMID: 8160497 [PubMed - indexed for MEDLINE]
Related citations

1421. Uptake and accumulation of 1-methyl-4-phenylpyridinium by rat liver mitochondria measured using an ion-selective electrode.
Davey GP, Tipton KF, Murphy MP.
Related citations

1422. Gene transfer of a reserpine-sensitive mechanism of resistance to N-methyl-4-phenylpyridinium.
Liu Y, Roghani A, Edwards RH.
Related citations

1423. A cDNA that suppresses MPP+ toxicity encodes a vesicular amine transporter.
Liu Y, Peter D, Roghani A, Schuldiner S, Privé GG, Eisenberg D, Brecha N, Edwards RH.
PMID: 1505023 [PubMed - indexed for MEDLINE]
1424. **Quantitative autoradiography of dihydrorotenone binding to complex I of the electron transport chain.**
PMID: 1629744 [PubMed - indexed for MEDLINE]
Related citations

1425. **MK-801 prevents 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced parkinsonism in primates.**
PMID: 1629743 [PubMed - indexed for MEDLINE]
Related citations

1426. **Parkinsonism-inducing neurotoxin MPP+: uptake and toxicity in nonneuronal COS cells expressing dopamine transporter cDNA.**
PMID: 1642464 [PubMed - indexed for MEDLINE]
Related citations

1427. **Parkinson's disease and exposure to agricultural work and pesticide chemicals.**
PMID: 1620342 [PubMed - indexed for MEDLINE]
Related citations

1428. **Mitochondrial mechanisms of neurotoxicity.**
11;648:28-36. Review. No abstract
available.
PMID: 1637057 [PubMed - indexed for MEDLINE]
Related citations

1429. Life-style and dietary factors early and late in Parkinson’s disease.
Vieregge P, von Maravic C, Friedrich HJ.
PMID: 1623441 [PubMed - indexed for MEDLINE]
Related citations

1430. Transgenic mice with increased Cu/Zn-superoxide dismutase activity are resistant to N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity.
Related citations

1431. 1-Methyl-4-phenylpyridinium (MPP+) but not 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) serves as methyl donor for dopamine: a possible mechanism of action.
Charlton CG.
PMID: 1590912 [PubMed - indexed for MEDLINE]
Related citations

1432. Search for neurotoxins structurally related to 1-methyl-4-phenylpyridine (MPP+) in the pathogenesis of Parkinson's disease.
Ikeda H, Markey CJ, Markey SP.
PMID: 1571786 [PubMed - indexed for MEDLINE]
Related citations

1433. The relationships between aging, monoamine oxidase, striatal dopamine and the effects of MPTP in C57BL/6 mice: a critical reassessment.
Irwin I, Finnegan KT, Delanney LE, Di Monte D, Langston JW.
PMID: 1611516 [PubMed - indexed for MEDLINE]
Related citations

1434. Irreversible inhibition of mitochondrial complex I by 1-methyl-4-phenylpyridinium: evidence for free radical involvement.
Cleeter MW, Cooper JM, Schapira AH.
PMID: 1729421 [PubMed - indexed for MEDLINE]
Related citations

1435. Acute and persistent parkinsonism after use of diquat.
Sechi GP, Agnetti V, Piredda M, Canu M, Deserra F, Omar HA, Rosati G.
PMID: 1734316 [PubMed - indexed for MEDLINE]
Related citations

1436. Exposure to well water and pesticides in Parkinson's disease: a case-control study in the Madrid area.
Jiménez-Jiménez FJ, Mateo D, Giménez-Roldán S.
PMID: 1584237 [PubMed - indexed for MEDLINE]
Related citations

Yoshino H, Nakagawa-Hattori Y, Kondo T, Mizuno Y.
PMID: 1347219 [PubMed - indexed for MEDLINE]

Related citations

1438. Therapy of Morbus Parkinson and radical-induced neurotoxicity in the rat--in vivo voltammetric studies.
Wesemann W.
PMID: 1283403 [PubMed - indexed for MEDLINE]

Related citations

PMID: 1940917 [PubMed - indexed for MEDLINE]

Related citations

1440. Dehydration is the first step in the bioactivation of haloperidol to its pyridinium metabolite.
Fang J, Gorrod JW.
PMID: 1755019 [PubMed - indexed for MEDLINE]

Related citations

1441. Selective and nonselective effects of 1-methyl-4-phenylpyridinium on oxygen consumption in rat striatal and
hippocampal slices.
Martin FR, Sanchez-Ramos J, Rosenthal M.
PMID: 1895108 [PubMed - indexed for MEDLINE]
Related citations

1442. **The epidemiology of Parkinson's disease. A case-control study of young-onset and old-onset patients.**
Stern M, Dulaney E, Gruber SB, Golbe L, Bergen M, Hurtig H, Gollomp S, Stolley P.
PMID: 1953412 [PubMed - indexed for MEDLINE]
Related citations

1443. **No relevance to Parkinson's.**
Hefti F, Denton TL, Beck KD, Michel PP.
PMID: 1830925 [PubMed - indexed for MEDLINE]
Related citations

1444. **Finger tremor after carbon disulfide-based pesticide exposures.**
PMID: 1898265 [PubMed - indexed for MEDLINE]
Related citations

1445. **A redox reaction between MPP+ and MPDP+ to produce superoxide radicals does not impair mitochondrial function.**
Walker MJ, Jenner P, Marsden CD.
PMID: 1651082 [PubMed - indexed for MEDLINE]
1446. **Pesticide poisoning surveillance through regional poison control centers.**
Olson DK, Sax L, Gunderson P, Sioris L.
PMID: 2029045 [PubMed - indexed for MEDLINE]
Free PMC Article

1447. **Interaction of 1-methyl-4-phenylpyridinium ion (MPP+) and its analogs with the rotenone/piericidin binding site of NADH dehydrogenase.**
Ramsay RR, Krueger MJ, Youngster SK, Gluck MR, Casida JE, Singer TP.
PMID: 2002336 [PubMed - indexed for MEDLINE]

1448. **Environmental risk factors in siblings with Parkinson's disease.**
Wong GF, Gray CS, Hassanein RS, Koller WC.
PMID: 2001187 [PubMed - indexed for MEDLINE]

1449. **Protection of substantia nigra from MPP+ neurotoxicity by N-methyl-D-aspartate antagonists.**
Turski L, Bressler K, Rettig KJ, Löschmann PA, Wachtel H.
PMID: 1846943 [PubMed - indexed for MEDLINE]

1450. **Pyridine derivatives: structure-activity relationships causing parkinsonism-like**
symptoms.
Bachurin SO, Tkachenko SE, Lermontova NN.
PMID: 1771272 [PubMed - indexed for MEDLINE]
Related citations

1451. [Parkinson's disease and environmental factors].
Zuber M, Alperovitch A.
PMID: 1754703 [PubMed - indexed for MEDLINE]
Related citations

1452. A pilot study of occupational and environmental risk factors for Parkinson's disease.
Wechsler LS, Checkoway H, Franklin GM, Costa LG.
PMID: 1745430 [PubMed - indexed for MEDLINE]
Related citations

1453. [Clinical and biochemical parameters of parkinsonism induced by 1-methyl-4-phenyl-1,2,2,6-tetrahydropyridine and its methyl-phenyl and methoxy-phenyl derivatives in C57Bl/6 mice].
Lermontova NN, Soliakov LS, Bachurin SO, Serkova TP, Petrova LN, Dranyi OA, Tkachenko SE, Kalashnikov VV.
PMID: 2279092 [PubMed - indexed for MEDLINE]
Related citations

1454. 1-Methyl-4-phenylpyridinium (MPP+) does not exhibit paraquat-like
immunoreactivity.
Houzé P, Chappey O, Gallons H, Scherrmann JM.
PMID: 2237940 [PubMed - indexed for MEDLINE]
Related citations

PMID: 2381528 [PubMed - indexed for MEDLINE]
Related citations

1456. [Environmental factors in the etiology of Parkinson's disease].
PMID: 2207882 [PubMed - indexed for MEDLINE]
Related citations

1457. Toxicity of 6-hydroxydopamine and dopamine for dopaminergic neurons in culture.
Michel PP, Hefti F.
PMID: 1977925 [PubMed - indexed for MEDLINE]
Related citations

1458. Potential environmental neurotoxins related to 1-methyl-4-phenylpyridinium: selective toxicity of 1-methyl-4-((4'-acetamidophenyl)-pyridinium and 1-methyl-4-cyclohexylpyridinium for dopaminergic neurons in culture.
Michel PP, Dandapani BK, Efange SM, Hefti F.
PMID: 2335192 [PubMed - indexed for MEDLINE]
Related citations

1459. Parkinson's disease.
Marsden CD.
Lancet. 1990 Apr 21;335(8695):948-52.
Review. No abstract available.
PMID: 1691427 [PubMed - indexed for MEDLINE]
Related citations

1460. Change of tyrosine hydroxylase in the parkinsonian brain and in the brain of MPTP-treated mice as revealed by homospecific activity.
Nagatsu T.
PMID: 1975089 [PubMed - indexed for MEDLINE]
Related citations

1461. Dopamine uptake inhibitory capacities of beta-carboline and 3,4-dihydro-beta-carboline analogs of N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) oxidation products.
Drucker G, Raikoff K, Neafsey EJ, Collins MA.
PMID: 2137718 [PubMed - indexed for MEDLINE]
Related citations

Rabey JM, Hefti F.
PMID: 2357268 [PubMed - indexed for MEDLINE]
Related citations

1463. **MPTP, MPDP+ and MPP+ cause decreases in dopamine content in mouse brain slices.**
Wilson JA, Doyle TJ, Lau YS.
PMID: 2304632 [PubMed - indexed for MEDLINE]

Related citations

1464. **Follow-up study of early-life protective and risk factors in Parkinson's disease.**
Golbe LI, Farrell TM, Davis PH.
PMID: 2296261 [PubMed - indexed for MEDLINE]

Related citations

1465. **Experimental hemiparkinsonism in the rat following chronic unilateral infusion of MPP+ into the nigrostriatal dopamine pathway--III. Reversal by embryonic nigral dopamine grafts.**
Sirinathsinghji DJ, Dunnett SB, Northrop AJ, Morris BJ.
PMID: 2247221 [PubMed - indexed for MEDLINE]

Related citations

1466. **Poisoning by some insecticides, herbicides and fungicides.**
Mahieu P, Lauwerys R, Dive A, Hantson P.
Review.
PMID: 2239069 [PubMed - indexed for MEDLINE]

Related citations

1467. **Aspects of pesticide toxicology.**
Blain PG.
Adverse Drug React Acute Poisoning
PMID: 2190453 [PubMed - indexed for MEDLINE]
Related citations

1468. Visualization of interleukin-2-like molecules in MPP(+) -lesioned rat brain.
Liang SM, Liang CM, Chiuhe CC.
PMID: 2610695 [PubMed - indexed for MEDLINE]
Related citations

1469. Striatal dopaminergic toxicity following intranigral injection in rats of 2-methyl-norharman, a beta-carbolinium analog of N-methyl-4-phenylpyridinium ion (MPP+).
Neafsey EJ, Drucker G, Raikoff K, Collins MA.
PMID: 2594220 [PubMed - indexed for MEDLINE]
Related citations

1470. The effect of prenatal treatment with MPTP or MPP+ on the development of dopamine-mediated behaviors in rats.
Weissman EM, Norman AB, Calderon SF, Zubrycki EM, el-Etri MM, Shipley MT, Sanberg PR.
PMID: 2623012 [PubMed - indexed for MEDLINE]
Related citations

1471. Epidemiologic study of Parkinson's disease in Hong Kong.
Ho SC, Woo J, Lee CM.
PMID: 2797455 [PubMed - indexed for MEDLINE]
Related citations

1472. Gardening and young onset Parkinson disease.
 Martinelli P, Gabellini AS, Martinelli A, Contin M.
 PMID: 2793422 [PubMed - indexed for MEDLINE]

Related citations

1473. Interactions of manganese with human brain glutathione-S-transferase.
 Vescovi A, Gebbia M, Cappelletti G, Parati EA, Santagostino A.

Related citations

1474. Evaluation of the capability of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and pyridine derivatives to evoke parkinsonism.
 Lermontiva NN, Soliakov LS, Bachurin SO, Tkachenko SE, Serkova TP.
 PMID: 2790166 [PubMed - indexed for MEDLINE]

Related citations

1475. Parkinson disease in farm workers.
 Stefano E, Casali C, Caporali M, Sancesario G, Morocutti C.
 PMID: 2767946 [PubMed - indexed for MEDLINE]

Related citations

1476. Intracerebral microdialysis neurotoxicity studies of quinoline and isoquinoline derivatives related to MPTP/MPP+.
PMID: 2788253 [PubMed - indexed for MEDLINE]
Related citations

1477. 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine inhibits proton motive force in energized liver mitochondria.
Singh Y, Bhatnagar R, Sidhu GS, Batra JK, Krishna G.
PMID: 2540715 [PubMed - indexed for MEDLINE]
Related citations

1478. MPP+-induced pathophysiology demonstrates advantages of neurotoxicology studies in brain slices.
Hollinden GE, Sanchez-Ramos JR, Sick TJ, Rosenthal M.
PMID: 2786117 [PubMed - indexed for MEDLINE]
Related citations

1479. Enhancement by tetraphenylboron of the interaction of the 1-methyl-4-phenylpyridinium ion (MPP+) with mitochondria.
Ramsay RR, Mehlhorn RJ, Singer TP.
PMID: 2784681 [PubMed - indexed for MEDLINE]
Related citations

1480. [Clinico-electroencephalographic indices of the parkinsonian syndrome induced by MPP+ in rats].
Kryzhanovski? GN, Atadzhanov MA,
Voronina TA, Nerobkova LN, Zagorevski VA.
PMID: 2784332 [PubMed - indexed for MEDLINE]
Related citations

1481. [Lipid peroxidation in the caudate nuclei in experimental parkinsonian syndrome].
Kucherianu VG, Atadzhanov MA, Nikushkin EV, Zagorevskiĭ VA, Sharkova LM.
PMID: 2783652 [PubMed - indexed for MEDLINE]
Related citations

1482. A sheep model for MPTP induced Parkinson-like symptoms.
PMID: 2586222 [PubMed - indexed for MEDLINE]
Related citations

1483. MPP+–induced increases in extracellular potassium ion activity in rat striatal slices suggest that consequences of MPP+ neurotoxicity are spread beyond dopaminergic terminals.
Hollinden GE, Sanchez-Ramos JR, Sick TJ, Rosenthal M.
PMID: 3265070 [PubMed - indexed for MEDLINE]
Related citations

1484. Characteristics of the transport of the quaternary ammonium 1-methyl-4-phenylpyridinium by chromaffin granules.
Darchen F, Scherman D, Desnos C, Henry JP.
Biochem Pharmacol. 1988 Nov
PMID: 3264161 [PubMed - indexed for MEDLINE]
Related citations

1485. [No Parkinsonian syndrome following acute paraquat poisoning].
Zilker T, Fogt F, von Clarmann M.
Klin Wochenschr. 1988 Nov
PMID: 2907065 [PubMed - indexed for MEDLINE]
Related citations

1486. Susceptibility in Parkinson's disease. 'Of mice and men'.
Borm PJ, Van Vliet C.
PMID: 3211016 [PubMed - indexed for MEDLINE]
Related citations

Lindquist NG, Larsson BS, Lydén-Sokolowski A.
PMID: 3264893 [PubMed - indexed for MEDLINE]
Related citations

1488. Experimental hemiparkinsonism in the rat following chronic unilateral infusion of MPP+ into the nigrostriatal dopamine pathway--II. Differential localization of dopamine and cholecystokinin receptors.
Beresford IJ, Davenport AP, Sirinathsinghji DJ, Hall MD, Hill RG, Hughes J.
1489. **Experimental hemiparkinsonism in the rat following chronic unilateral infusion of MPP+ into the nigrostriatal dopamine pathway--I. Behavioural, neurochemical and histological characterization of the lesion.**

PMID: 3264391 [PubMed - indexed for MEDLINE]

Related citations

1490. **Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson's disease.**

PMID: 2899295 [PubMed - indexed for MEDLINE]

Related citations

1491. **1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine metabolism and 1-methyl-4-phenylpyridinium uptake in dissociated cell cultures from the embryonic mesencephalon.**

PMID: 3259619 [PubMed - indexed for MEDLINE]

Related citations

1492. **Chronic exposure to the fungicide maneb may produce symptoms and signs of CNS manganese intoxication.**

PMID: 3352909 [PubMed - indexed for MEDLINE]
1493. **Mechanism of the neurotoxicity of 1-methyl-4-phenylpyridinium (MPP+), the toxic bioactivation product of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).**

Singer TP, Ramsay RR, McKeown K, Trevor A, Castagnoli NE Jr.
Toxicology. 1988 Apr;49(1):17-23.
Review.
PMID: 3287690 [PubMed - indexed for MEDLINE]

1494. **Effects of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), cyperquat (MPP+) and paraquat on isolated mitochondria from rat striatum, cortex and liver.**

Thakar JH, Hassan MN.
PMID: 3260653 [PubMed - indexed for MEDLINE]

1495. **1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), its metabolite cyperquat (MPP+) and energy transduction in mitochondria from rat striatum and liver.**

Thakar JH, Hassan MN, Grimes JD.
PMID: 3260387 [PubMed - indexed for MEDLINE]

1496. **Intracerebroventricular administration of 1-methyl-4-phenylpyridinium ion in mice: effects of simultaneously administered nomifensine, deprenyl, and 1-t-butyl-4,4-diphenylpiperidine.**

Mihatsch W, Russ H, Przuntek H.
PMID: 3128644 [PubMed - indexed for MEDLINE]

1497. Paraquat and Parkinson's disease.
Rajput AH, Uitti RJ.
No abstract available.
PMID: 3670622 [PubMed - indexed for MEDLINE]

1498. MPTP: an industrial chemical and contaminant of illicit narcotics stimulates a new era in research on Parkinson's disease.
Kopin IJ.
Environ Health Perspect. 1987 Nov;75:45-51. Review.

1499. Geography, drinking water chemistry, pesticides and herbicides and the etiology of Parkinson's disease.
Rajput AH, Uitti RJ, Stern W, Laverty W, O'Donnell K, O'Donnell D, Yuen WK, Dua A.
PMID: 3676917 [PubMed - indexed for MEDLINE]

1500. Biochemical events in the development of parkinsonism induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine.
Singer TP, Castagnoli N Jr, Ramsay RR, Trevor AJ.
PMID: 3495634 [PubMed - indexed for MEDLINE]
Related citations

1501. Pathophysiology and biochemical mechanisms involved in MPTP-induced parkinsonism.
Poirier J.
No abstract available.
PMID: 3108351 [PubMed - indexed for MEDLINE]

Related citations

1502. Actions of MPTP and MPP+ on synaptic transmission in guinea-pig hippocampal slices.
Galvan M, Kupsch A, ten Bruggencate G.
PMID: 3032664 [PubMed - indexed for MEDLINE]

Related citations

1503. Chemically induced Parkinson's disease: intermediates in the oxidation of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine to the 1-methyl-4-phenyl-pyridinium ion.
Chacon JN, Chedekel MR, Land EJ, Truscott TG.
Biochem Biophys Res Commun. 1987 Apr 29;144(2):957-64.
PMID: 3495270 [PubMed - indexed for MEDLINE]

Related citations

1504. Paraquat and Parkinson's disease.
Sanchez-Ramos JR, Hefti F, Weiner WJ.
PMID: 3561790 [PubMed - indexed for MEDLINE]

Related citations

1505. General Referee reports: Committee on Pesticide Formulations and
Disinfectants.
[No authors listed]
PMID: 3571121 [PubMed - indexed for MEDLINE]
Related citations

1506. 4-Phenylpyridine (4PP) and MPTP: the relationship between striatal MPP+
concentrations and neurotoxicity.
Irwin I, Langston JW, DeLanney LE.
PMID: 3492652 [PubMed - indexed for MEDLINE]
Related citations

1507. Parkinsonism and industrial chemicals.
Chapman LJ, Peters HA, Matthews CG, Levine RL.
PMID: 2880148 [PubMed - indexed for MEDLINE]
Related citations

1508. Ecogenetics of Parkinson's disease: prevalence and environmental aspects in
rural areas.
PMID: 3815163 [PubMed - indexed for MEDLINE]
Related citations

1509. Parkinson's disease and pesticides.
Hart TB.
PMID: 2879110 [PubMed - indexed for MEDLINE]
Related citations
1510. **Toxins and Parkinson's disease: MPTP parkinsonism in humans and animals.**
Kopin IJ.
Adv Neurol. 1987;45:137-44. No abstract available.
PMID: 3493621 [PubMed - indexed for MEDLINE]
Related citations

1511. **Inhibition of the tyrosine hydroxylase system by MPTP, 1-methyl-4-phenylpyridinium ion (MPP+) and the structurally related compounds in vitro and in vivo.**
Nagatsu T, Hirata Y.
Eur Neurol. 1987;26 Suppl 1:11-5.
PMID: 2884110 [PubMed - indexed for MEDLINE]
Related citations

1512. **Parkinson's disease and pesticides.**
Bocchetta A, Corsini GU.
PMID: 2877313 [PubMed - indexed for MEDLINE]
Related citations

1513. **The effects of pyridinium salts, structurally related compounds of 1-methyl-4-phenylpyridinium ion (MPP+), on tyrosine hydroxylation in rat striatal tissue slices.**
Hirata Y, Sugimura H, Takei H, Nagatsu T.
PMID: 3099974 [PubMed - indexed for MEDLINE]
Related citations

1514. **The pharmacology of the parkinsonian syndrome producing neurotoxin MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine) and structurally related compounds.**
Paraquat and two endogenous analogues of the neurotoxic substance N-methyl-4-phenyl-1,2,3,6-tetrahydropyridine do not damage dopaminergic nigrostriatal neurons in the mouse.

[Neurobiologic and pharmacologic studies on the pathogenesis of Parkinson disease].

Paraquat and Parkinson's disease.

Organophosphate poisoning in office workers.

Histochemistry of MPTP oxidation in...
the rat brain: sites of synthesis of the parkinsonism-inducing toxin MPP+.
Nakamura S, Vincent SR.
PMID: 3487052 [PubMed - indexed for MEDLINE]
Related citations

1520. MPTP causes a non-reversible depression of synaptic transmission in mouse neostriatal brain slice.
Wilson JA, Wilson JS, Weight FF.
Brain Res. 1986 Mar 19;368(2):357-60.
PMID: 3008929 [PubMed - indexed for MEDLINE]
Related citations

1521. N-methyl-4-phenylpyridine (MMP+) together with 6-hydroxydopamine or dopamine stimulates Ca2+ release from mitochondria.
Frei B, Richter C.
PMID: 3082673 [PubMed - indexed for MEDLINE]
Related citations

1522. Selectivity of the parkinsonian neurotoxin MPTP: toxic metabolite MPP+ binds to neuromelanin.
D'Amato RJ, Lipman ZP, Snyder SH.
PMID: 3080808 [PubMed - indexed for MEDLINE]
Related citations

1523. Inhibition of mitochondrial NADH dehydrogenase by pyridine derivatives and its possible relation to experimental and idiopathic parkinsonism.
Ramsay RR, Salach JI, Dadgar J, Singer TP.
Biochem Biophys Res Commun. 1986 Feb 26;135(1):269-75.
1524. Potential neurotoxicity of NaBH4 reduced paraquat.
Worobey BL.
No abstract available.
PMID: 3485217 [PubMed - indexed for MEDLINE]

1525. Neuropharmacological manipulations with MPTP.
Barnes NJ, Bradbury AJ, Costall B, Domeney AM, Kelly ME, Naylor RJ.
PMID: 3091761 [PubMed - indexed for MEDLINE]

1526. L-dopa reverses the effects of MPP+ toxicity.
Wagner GC, Jarvis MF, Rubin JG.
PMID: 3083462 [PubMed - indexed for MEDLINE]

1527. 1-Methyl-4-phenyl-pyridinium-induced inhibition of nicotinamide adenosine dinucleotide cytochrome c reductase.
Poirier J, Barbeau A.
PMID: 3877888 [PubMed - indexed for MEDLINE]

1528. Clinical trial for Parkinson's disease?
Lewin R.
No abstract available.
PMID: 3931220 [PubMed - indexed for MEDLINE]
1529. **Comparative behavioral, biochemical and pigmentary effects of MPTP, MPP+ and paraquat in Rana pipiens.**
Barbeau A, Dallaire L, Buu NT, Poirier J, Rucinska E.
PMID: 3876500 [PubMed - indexed for MEDLINE]

1530. **The neurotoxic actions of 1-methyl-4-phenylpyridine (MPP+) are not prevented by deprenyl treatment.**
Bradbury AJ, Costall B, Jenner PG, Kelly ME, Marsden CD, Naylor RJ.
PMID: 2413398 [PubMed - indexed for MEDLINE]

1531. **Parkinson's disease: an environmental cause?**
Lewin R.
No abstract available.
PMID: 3925554 [PubMed - indexed for MEDLINE]

1532. **New amphibian models for the study of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).**
Barbeau A, Dallaire L, Buu NT, Veilleux F, Boyer H, de Lanney LE, Irwin I, Langston EB, Langston JW.
PMID: 3871891 [PubMed - indexed for MEDLINE]

1533. **Significance of chemically noxious agents in the etiology of Parkinson**
syndrome].
Glass J.
Z Arztl Fortbild (Jena).
PMID: 4049941 [PubMed - indexed for MEDLINE]
Related citations

1534. The importance of the '4-5' double bond for neurotoxicity in primates of the pyridine derivative MPTP.
Langston JW, Irwin I, Langston EB, Forno LS.
PMID: 6333656 [PubMed - indexed for MEDLINE]
Related citations

1535. 1-Methyl-4-phenylpyridinium ion (MPP+): identification of a metabolite of MPTP, a toxin selective to the substantia nigra.
Langston JW, Irwin I, Langston EB, Forno LS.
PMID: 6332288 [PubMed - indexed for MEDLINE]
Related citations

1536. MPTP-induced parkinsonism in human and non-human primates--clinical and experimental aspects.
Langston JW, Langston EB, Irwin I.
Acta Neurol Scand Suppl. 1984;100:49-54.
PMID: 6333134 [PubMed - indexed for MEDLINE]
Related citations

1537. [Residues of plant protection products and agents for controlling biological processes in drugs of the pharmacopoeia of the GDR, edition 2. 1. General aspects
of packaging of plant protection products and agents for controlling biological processes in botanical drugs in the GDR.

PMID: 751064 [PubMed - indexed for MEDLINE]

Related citations

1538. Clinical toxicosis induced by pesticides in livestock.
PMID: 250338 [PubMed - indexed for MEDLINE]

Related citations

1539. [Neurologic manifestations in the course of pesticide intoxication].
PMID: 683438 [PubMed - indexed for MEDLINE]

Related citations

1540. Single case study. Possible organophosphate-induced parkinsonism.
PMID: 641541 [PubMed - indexed for MEDLINE]

Related citations

1541. A compendium of inorganic substances used in European pest control before 1850.
Smith AE, Secoy DM.
J Agric Food Chem. 1976 Nov-
311

Dec;24(6):1180-6. No abstract available.
PMID: 794086 [PubMed - indexed for MEDLINE]

1542. Mortality in 1969 from pesticides, including aerosols.
Hayes WJ.
PMID: 1259472 [PubMed - indexed for MEDLINE]

1543. [The problem of toxicologic proof and consideration of environmental chemicals].
Lange G.
PMID: 4794779 [PubMed - indexed for MEDLINE]

1544. Pesticide legislation in New Zealand.
Thompson FB.
PMID: 4604895 [PubMed - indexed for MEDLINE]

1545. Diphenidol for levodopa induced nausea and vomiting.
Duvoisin RC.
JAMA. 1972 Sep 18;221(12):1408. No abstract available.
PMID: 5068561 [PubMed - indexed for MEDLINE]

1546. [Round table discussion: topics on neuromuscular disease].
Satoyashi E, Narabayashi H, Tsubaki T,
Mozai T, Sobue I.
PMID: 5097717 [PubMed - indexed for MEDLINE]
Related citations

1547. [Therapy of nervous system intoxications],
Greif S.
German. No abstract available.
PMID: 4400240 [PubMed - indexed for MEDLINE]
Related citations

By Gail P. Thelin and Wesley W. Stone
FOREWORD

The U.S. Geological Survey (USGS) is committed to providing the Nation with reliable scientific information that helps to enhance and protect the overall quality of life and that facilitates effective management of water, biological, energy, and mineral resources (http://www.usgs.gov/). Information on the Nation’s water resources is critical to ensuring long-term availability of water that is safe for drinking and recreation and is suitable for industry, irrigation, and fish and wildlife. Population growth and increasing demands for water make the availability of that water, measured in terms of quantity and quality, even more essential to the long-term sustainability of our communities and ecosystems.

The USGS implemented the National Water-Quality Assessment (NAWQA) Program in 1991 to support national, regional, State, and local information needs and decisions related to water-quality management and policy (http://water.usgs.gov/nawqa). The NAWQA Program is designed to answer: What is the quality of our Nation’s streams and groundwater? How are conditions changing over time? How do natural features and human activities affect the quality of streams and groundwater, and where are those effects most pronounced? By combining information on water chemistry, physical characteristics, stream habitat, and aquatic life, the NAWQA Program aims to provide science-based insights for current and emerging water issues and priorities. From 1991 to 2001, the NAWQA Program completed interdisciplinary assessments and established a baseline understanding of water-quality conditions in 51 of the Nation’s river basins and aquifers, referred to as Study Units (http://water.usgs.gov/nawqa/studies/study_units.html).

National and regional assessments are ongoing in the second decade (2001–2012) of the NAWQA Program as 42 of the 51 Study Units are selectively reassessed. These assessments extend the findings in the Study Units by determining water-quality status and trends at sites that have been consistently monitored for more than a decade, and filling critical gaps in characterizing the quality of surface water and groundwater. For example, increased emphasis has been placed on assessing the quality of source water and finished water associated with many of the Nation’s largest community water systems. During the second decade, NAWQA is addressing five national priority topics that build an understanding of how natural features and human activities affect water quality, and establish links between sources of contaminants, the transport of those contaminants through the hydrologic system, and the potential effects of contaminants on humans and aquatic ecosystems. Included are studies on the fate of agricultural chemicals, effects of urbanization on stream ecosystems, bioaccumulation of mercury in stream ecosystems, effects of nutrient enrichment on aquatic ecosystems, and transport of contaminants to public-supply wells. In addition, national syntheses of information on pesticides, volatile organic compounds (VOCs), nutrients, trace elements, and aquatic ecology are continuing.

The USGS aims to disseminate credible, timely, and relevant science information to address practical and effective water-resource management and strategies that protect and restore water quality. We hope this NAWQA publication will provide you with insights and information to meet your needs, and will foster increased citizen awareness and involvement in the protection and restoration of our Nation’s waters.

The USGS recognizes that a national assessment by a single program cannot address all water-resource issues of interest. External coordination at all levels is critical for cost-effective management, regulation, and conservation of our Nation’s water resources. The NAWQA Program, therefore, depends on advice and information from other agencies—Federal, State, regional, interstate, Tribal, and local—as well as nongovernmental organizations, industry, academia, and other stakeholder groups. Your assistance and suggestions are greatly appreciated.

William H. Werkheiser
USGS Associate Director for Water
Contents

Abstract ..1
Introduction ...1
Purpose and Scope ..3
Data Sources ..3
 Pesticide-Use Data ..3
 Harvested-Crop Acreage ..5
 Geospatial Data ..5
 Pesticide-Use Estimates for California ..7
Methods for Estimating Pesticide Use ...8
 Processing Zero Values ..9
 EPest Crop-Use Rates for Surveyed CRDs ..9
 EPest Use Rates for Unsurveyed CRDs—Tier 1, Tier 2, and Regional Use Rates9
Results ..12
 Comparison of EPest National Estimates with Other Sources ..13
 Comparisons of EPest and NASS State Estimates ...15
 Comparison of State Total-Use Estimates ..15
 Comparison of State Estimates for Individual Pesticide-by-Crop Combinations17
Herbicide Estimate Comparisons between EPest and NASS ..26
 Atrazine ..27
 Bentazon ...29
 Butylate ..29
 Fluometuron ..32
 Glyphosate ...32
 Corn ..32
 Cotton ...36
 Metolachlor ..36
 Corn ..36
 Soybeans ..36
 Metribuzin ...40
 Nicosulfuron ..40
 S-Metolachlor ..40
 Trifluralin ..44
 Cotton ...44
 Soybeans ..44
Insecticide Estimate Comparisons between EPest and NASS ..47
 Methomyl ...47
 Methyl Parathion ..47
Fungicide Estimate Comparisons between EPest and NASS—Propiconazole50
Summary of Comparisons ..52
Applications of EPest Use Data ...52
Contents—Continued

Summary and Conclusions..53
References Cited..54
Appendix 1. Summary of Epest-Low and Epest-High Annual National Totals by Pesticide and Crop Type...54
Appendix 2. Epest-Low and Epest-High Annual National Totals Derived from Epest Surveyed, Tier 1, Tier 2, and Regional Rate Estimates ...54

Figures

1. Graph showing trends in agricultural conventional pesticide use in the conterminous United States, 1992–2009 ..2
2. Map showing Crop Reporting Districts of the conterminous United States ..4
3. Map showing Crop Reporting District 20060 (Kansas CRD 60) and neighboring tier 1 and tier 2 Crop Reporting Districts ..7
4. Map showing U.S. Department of Agriculture Farm Resources Regions as subdivided for calculating regional estimated pesticide-use rates ...8
5. Flowchart showing summary of decision process followed to develop EPest rates10
7. Graphs showing comparison of EPest-low and EPest-high national total use of selected pesticides with national use estimates from other sources ..14
8. Boxplots showing distributions of relative error between EPest and National Agricultural Statistics Service use estimates ..16
9. Boxplots showing distribution of relative error between EPest-low and National Agricultural Statistics Service use estimates ..18
10. Boxplots showing distribution of relative error between EPest-high and National Agricultural Statistics Service use estimates ..19
11. Map showing U.S. Department of Agriculture Farm Production Regions27
12. Graphs showing comparison of EPest and National Agricultural Statistics Service state estimates of alachlor use on corn ..28
13. Graph showing comparison of EPest and National Agricultural Statistics Service state estimates of atrazine use on corn ..30
14. Graphs showing comparison of EPest and National Agricultural Statistics Service state estimates of bentazon use on corn ..31
15. Graphs showing comparison of EPest and National Agricultural Statistics Service state estimates of butylate use on corn ..33
16. Graphs showing comparison of EPest and National Agricultural Statistics Service state estimates of fluometuron use on cotton ..34
17. Graphs showing comparison of EPest and National Agricultural Statistics Service state estimates of glyphosate use on corn ..35
18. Graphs showing comparison of EPest and National Agricultural Statistics Service state estimates of glyphosate use on cotton ..37
19. Graphs showing comparison of EPest and National Agricultural Statistics Service state estimates of metolachlor use on corn ..38
Figures—Continued

20. Graphs showing comparison of EPest and National Agricultural Statistics Service state estimates of metolachlor use on soybeans...39
21. Graphs showing comparison of EPest and National Agricultural Statistics Service state estimates of metribuzin use on soybeans ...41
22. Graphs showing comparison of EPest and National Agricultural Statistics Service state estimates of nicosulfuron use on corn...42
23. Graphs showing comparison of EPest and National Agricultural Statistics Service state estimates of S-metolachlor use on corn...43
24. Graphs showing comparison of EPest and National Agricultural Statistics Service state estimates of trifluralin use on cotton...45
25. Graphs showing comparison of EPest and National Agricultural Statistics Service state estimates of trifluralin use on soybeans...46
26. Graph showing comparison of EPest and National Agricultural Statistics Service state estimates of methomyl use on cotton...48
27. Graph showing comparison of EPest and National Agricultural Statistics Service state estimates of methyl parathion use on cotton...49
28. Graphs showing comparison of EPest and National Agricultural Statistics Service state estimates of propiconazole use on winter wheat...51

Tables

1. List of pesticide names and type, for which annual county pesticide-use estimates were calculated..3
2. EPest crop name and corresponding U.S. Department of Agriculture Census of Agriculture crop names..6
Conversion Factors

Inch/Pound to SI

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>acre</td>
<td>4,047</td>
<td>square meter (m²)</td>
</tr>
<tr>
<td>acre</td>
<td>0.4047</td>
<td>hectare (ha)</td>
</tr>
<tr>
<td>acre</td>
<td>0.4047</td>
<td>square hectometer (hm²)</td>
</tr>
<tr>
<td>acre</td>
<td>0.004047</td>
<td>square kilometer (km²)</td>
</tr>
<tr>
<td>square mile (mi²)</td>
<td>259.0</td>
<td>hectare (ha)</td>
</tr>
<tr>
<td>square mile (mi²)</td>
<td>2.590</td>
<td>square kilometer (km²)</td>
</tr>
</tbody>
</table>

Mass

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>pound, avoirdupois (lb)</td>
<td>0.4536</td>
<td>kilogram (kg)</td>
</tr>
</tbody>
</table>

SI to Inch/Pound

<table>
<thead>
<tr>
<th>Multiply</th>
<th>By</th>
<th>To obtain</th>
</tr>
</thead>
<tbody>
<tr>
<td>square kilometer (km²)</td>
<td>247.1</td>
<td>acre</td>
</tr>
<tr>
<td>square kilometer (km²)</td>
<td>0.3861</td>
<td>square mile (mi²)</td>
</tr>
</tbody>
</table>

Abbreviations

ACU Agricultural Chemical Use
CDL Cropland Data Layer
CRD Crop Reporting District
DPR California Department of Pesticide Regulation
DPR-PUR Department of Pesticide Regulation-Pesticide Use Reporting (California)
EPest Estimated pesticide use
FR Fruitful Rim
GIS Geographic Information System
NASS National Agricultural Statistics Service
NAWQA National Water Quality Assessment Program
NPUD National Pesticide Use Data
PUR Pesticide Use Reporting
RE Relative error calculated as: (EPest–NASS) /NASS
USDA U.S. Department of Agriculture
USEPA U.S. Environmental Protection Agency
USGS U.S. Geological Survey
WARP Watershed Regressions for Pesticides

By Gail P. Thelin and Wesley W. Stone

Abstract

A method was developed to calculate annual county-level pesticide use for selected herbicides, insecticides, and fungicides applied to agricultural crops grown in the conterminous United States from 1992 through 2009. Pesticide-use data compiled by proprietary surveys of farm operations located within Crop Reporting Districts were used in conjunction with annual harvested-crop acreage reported by the U.S. Department of Agriculture National Agricultural Statistics Service (NASS) to calculate use rates per harvested-crop acre, or an 'estimated pesticide use' (EPest) rate, for each crop by year. Pesticide-use data were not available for all Crop Reporting Districts and years. When data were unavailable for a Crop Reporting District in a particular year, EPest extrapolated rates were calculated from adjoining or nearby Crop Reporting Districts to ensure that pesticide use was estimated for all counties that reported harvested-crop acreage. EPest rates were applied to county harvested-crop acreage differently to obtain EPest-low and EPest-high estimates of pesticide-use for counties and states, with the exception of use estimates for California, which were taken from annual Department of Pesticide Regulation Pesticide Use Reports.

Annual EPest-low and EPest-high use totals were compared with other published pesticide-use reports for selected pesticides, crops, and years. EPest-low and EPest-high national totals for five of seven herbicides were in close agreement with U.S. Environmental Protection Agency and National Pesticide Use Data estimates, but greater than most NASS national totals. A second set of analyses compared EPest and NASS annual state totals and state-by-crop totals for selected crops. Overall, EPest and NASS use totals were not significantly different for the majority of crop-state-year combinations evaluated. Furthermore, comparisons of EPest and NASS use estimates for most pesticides had rank correlation coefficients greater than 0.75 and median relative errors of less than 15 percent. Of the 48 pesticide-by-crop combinations with 10 or more state-year combinations, 12 of the EPest-low and 17 of the EPest-high totals showed significant differences ($p < 0.05$) from NASS use estimates. The differences between EPest and NASS estimates did not follow consistent patterns related to particular crops, years, or states, and most correlation coefficients were greater than 0.75.

EPest values from this study are suitable for making national, regional, and watershed assessments of annual pesticide use from 1992 to 2009. Although estimates are provided by county to facilitate estimation of watershed pesticide use for a wide variety of watersheds, there is a greater degree of uncertainty in individual county-level estimates when compared to Crop Reporting District or state-level estimates because (1) EPest crop-use rates were developed on the basis of pesticide use on harvested acres in multi-county areas (Crop Reporting Districts) and then allocated to county harvested cropland; (2) pesticide-by-crop use rates were not available for all Crop Reporting Districts in the conterminous United States, and extrapolation methods were used to estimate pesticide use for some counties; and (3) it is possible that surveyed pesticide-by-crop use rates do not reflect all agricultural use on all crops grown. The methods developed in this study also are applicable to other agricultural pesticides and years.

Introduction

Hundreds of millions of pounds of pesticides are applied to agricultural crops every year to control weeds, insect infestations, plant diseases, and other pests. Annually, the total amount of conventional pesticides (excluding sulfur, petroleum oil, chlorine, hypochlorites, and wood preservatives) applied to crops grown throughout the conterminous United States has increased from a low of about 698 million pounds in the early 1990s (http://www.epa.gov/opp00001/pestsales/07pestsales/historical_data2007_3.htm#table5_6, accessed November 16, 2011) to a high of over 800 million pounds in 1996 (fig. 1). From 1996 through 2007, there was a slight downward trend in the total amount of pesticides used, reflecting decreases in the use of herbicides, plant growth regulators, and other conventional pesticides. Most of these differences in pesticide use can be attributed to changes in crop-management practices, the development of new pesticides that are effective at reduced use rates, and the introduction of genetically modified crops (Young, 2006; Fernandez-Cornejo and McBride, 2000).
Pesticides are important to crop management because they contribute to increased crop yields and improve the quality of crops. Pesticides applied to crops and soil, however, can be transported to surface water and groundwater, where they can degrade water quality. Pesticide concentrations in streams vary widely across the United States and are influenced by many factors, such as the amount and timing of pesticide applications and the soils, climate, and hydrology where they are applied (Gilliom and others, 2006). Nationally consistent information on the amount and geographic distribution of pesticide use, both current and historic, is essential for designing water-quality studies, interpreting water-quality data, assessing trends in pesticide use, and developing water-quality models that relate pesticide use to concentrations in the hydrologic environment.

Agricultural pesticide-use information is available from the U.S. Department of Agriculture (USDA) National Agricultural Statistics Service (NASS), but these data are reported as state totals for varying regions, crops, and years and, consequently, do not have sufficient geographic coverage, resolution, or temporal consistency to support studies at watershed or multicounty scales. California’s Department of Pesticide Regulation (DPR) collects detailed pesticide-use information from all licensed applicators in the State and publishes annual Pesticide Use Reports (DPR-PURs) that include detailed pesticide-use information (California Department of Pesticide Regulation, 2010). Agricultural pesticide-use data also are available from proprietary sources, but extrapolation techniques, such as those described in this report, are needed so that these data can be used by the National Water Quality Assessment (NAWQA) Program to estimate pesticide use for all counties of the conterminous United States.

A previous U.S. Geological Survey (USGS) study focused on developing extrapolation methods to determine county-level estimates for the herbicide atrazine by using proprietary pesticide-use reports and county harvested-crop acreage (Thelin and Stone, 2010). As part of that approach, regional rates were developed by using data from multiple years, and atrazine estimates were calculated for most counties in the conterminous United States. Comparisons with other data sources indicated that this approach to regional extrapolation could over-estimate pesticide use for pesticides that are not widely used across all geographic regions or when pesticide-use practices changed. This report describes an approach to estimating pesticide use, referred to as EPest, that is based on previous efforts but has changes that limit the use of regional rates, that incorporate a refined version of crop growing regions, and that expand the method to 39 herbicides, insecticides, and fungicides used in agriculture (table 1).

Figure 1. Trends in agricultural conventional pesticide use in the conterminous United States, 1992–2009.
The purpose of this report is to describe (1) a method to estimate annual pesticide-by-crop use rates (pounds applied per harvested-crop acre), referred to as EPest rates, for 39 pesticides; (2) the process that was followed to apply these rates to produce an EPest-low and EPest-high estimate of annual use for each county; and (3) how the estimates for selected pesticides and crops derived by these methods compare with estimates from other published sources. This method was developed by using pesticide-use estimates reported for Crop Reporting Districts (CRDs) to calculate annual pesticide-by-crop use rates and, from that, estimates of pesticide use for individual counties. The 39 selected pesticides represent some of the primary pesticides used throughout the nation on row crops and several orchard and vegetable crops, and include 28 herbicides, 9 insecticides, and 2 fungicides. Most of these same pesticides were included in a Watershed Regressions for Pesticides (WARP) multi-compound model analysis (Charles Crawford, U.S. Geological Survey, oral commun., 2011).

The pesticides evaluated in this study represent a range of herbicides, insecticides, and fungicides that are used on a variety of row, fruit, nut, and specialty crops grown in different environmental settings. Several of these pesticides have had changes in use over time, providing an evaluation of method performance for a wide range of conditions. To assess the accuracy of EPest totals, state-level totals were compared with NASS use estimates for selected pesticides and crops for states and years for which NASS survey data were available.

Data Sources

Data sources used to develop EPest pesticide-by-crop use rates and annual pesticide-use estimates by county included the following: (1) proprietary pesticide-by-crop use estimates reported for CRDs; (2) USDA county harvested-crop acreage reported in the 1992, 1997, 2002, and 2007 Census of Agriculture (http://www.agcensus.usda.gov/), and NASS annual harvested-crop acreage data collected from crop surveys for non-census years (http://quickstats.nass.usda.gov/); (3) boundaries for CRDs and counties; (4) regional boundaries derived from USDA Farm Resource Regions; and (5) pesticide-use information from California DPR-PUR. Each of these sources is described in following sections.

Pesticide-Use Data

Proprietary data from GfK Kynetec, Inc. on the amounts of pesticides applied to individual crops by CRD are the primary source of information used in this study and are referred to as surveyed use data in the remainder of this report. The surveyed use data are based on agricultural pesticide surveys of more than 20,000 farm operations distributed throughout the conterminous United States (AgroTrak Quality Management Plan, written commun., August 2011). Data from the Census of Agriculture on the size (in acres) and number of farms that grow individual crops and represent selected land uses, such as pasture, are used to stratify all farms in the United States by size and to allocate the number of farms that will be surveyed in each strata. The survey design allocates a greater proportion of the sample to larger farm operations so that a greater percentage of crop acreage is represented, with the goal of more accurate characterization of farm operations and pesticide-use patterns. Use estimates for over 400 pesticides that are applied to a variety of row, specialty, fruit, and nut crops are reported by multi-county areas, referred to as CRDs (fig. 2). Surveys of farm operations within each CRD are extrapolated to represent total pesticide use for that CRD, and then estimates for individual CRDs or groups of CRDs are expanded to estimate pesticide use for states.

Table 1

List of pesticide names and type, for which annual county pesticide-use estimates were calculated.

<table>
<thead>
<tr>
<th>Pesticide name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetochlor</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Acifluorfen</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Alachlor</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Atrazine</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Benomyl</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Bentazon</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Bromoxynil</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Butylate</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Carbofuran</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Chlorimuron</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Cyanazine</td>
<td>Herbicide</td>
</tr>
<tr>
<td>EPTC</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Ethalflurinal</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Ethoprophos</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Fluometuron</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Fonofos</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Linuron</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Methomyl</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Methyl parathion</td>
<td>Insecticide</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>Herbicide</td>
</tr>
<tr>
<td>S-metolachlor</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Norflurazon</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Oryzalin</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Oxamyl</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Pebulate</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Phorate</td>
<td>Insecticide</td>
</tr>
<tr>
<td>Propachlor</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Propanil</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Propargite</td>
<td>Insecticide</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Propyzamide</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Terbacil</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Terbufos</td>
<td>Insecticide</td>
</tr>
<tr>
<td>Thiobencarb</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Triallate</td>
<td>Herbicide</td>
</tr>
<tr>
<td>Trifluralin</td>
<td>Herbicide</td>
</tr>
</tbody>
</table>
Figure 2. Crop Reporting Districts of the conterminous United States.
Harvested-Crop Acreage

The surveyed use data are based on planted-crop acres within a CRD, but NAWQA requires pesticide-use estimates at the county scale, including use estimates for pesticides that potentially were not surveyed. Therefore, the surveyed use data had to be disaggregated from CRDs to the individual counties. The USDA is the only uniform source of annual crop-acreage estimates for all counties in the United States. The USDA reports data on planted and harvested-crop acreage, but planted-acreage data are not available from the USDA for all of the individual crops with surveyed use data. Therefore, harvested acreage, rather than planted acreage, was used to develop annual pesticide-by-crop use rates. In taking this approach, it is recognized that use-rate estimates could be numerically greater than actual use rates on planted crops because not all planted acres are harvested. The emphasis of the method was to develop the best possible estimates of total use in a county, which required the use of the comprehensive data on harvested cropland. Annual harvested-crop acreage by county data from the USDA Census of Agriculture and NASS crop surveys were used in method development (1) to calculate the pesticide-by-crop use rates for each crop and CRD surveyed, and (2) to estimate pesticide use for all counties that report harvested acreage in the conterminous United States. Harvested-crop acreage was obtained from the Census of Agriculture for 1992, 1997, 2002, and 2007, and from NASS annual surveys for the years between censuses. Table 2 lists the crops for which EPest use rates were developed and the USDA crop names for which acreage data were retrieved from the Census of Agriculture and NASS.

County-level harvested-crop acreage for the 76 crops and other non-crop agricultural-land uses, such as pasture and woodland, were obtained from USDA reports and used to produce harvested-crop acreage totals for all CRDs. However, additional processing was required in three cases: (1) the USDA did not report county acreage for a crop and year because of census nondisclosure rules that protect the identity of individual farm operations, (2) the USDA-NASS annual surveys did not collect data for a particular state or crop, or (3) the crop acreage was the total acreage for multiple categories of that crop. In cases when county acreage was not reported because of USDA nondisclosure rules or when a crop and state had not been surveyed by NASS, the county crop acreage was estimated through linear interpolation of acreage reports for the crop and county from consecutive years before and after the year of missing crop acreage. In order to produce acreage totals for EPest crop names that were composed of more than one USDA crop name, the subcategories for that crop were summed to produce total harvested acreage. For example, the county total for sorghum acreage was calculated by summing the acreage for the subcategories of sorghum: sorghum for grain, sorghum for silage, and sorghum for syrup. Crop-acreage totals that comprised more than one crop name typically required crop acreage to be estimated through linear interpolation for some of the crop names because NASS crop surveys do not report all the same crop names as the Census of Agriculture. For example, NASS did not report acreage of corn for forage from 1992 through 2009. To estimate corn-for-forage acreage in non-census years, the acreage from two Censuses of Agriculture (prior and next) was interpolated to fill in the non-surveyed corn-for-forage acreage.

Geospatial Data

Two geospatial datasets were integral to the method used to calculate pesticide-by-crop use rates for surveyed and non-surveyed CRDs. These datasets included boundaries for CRDs and USDA Farm Resource Regions (http://www.ers.usda.gov/Briefing/ARMS/resourceregions/resourceregions.htm). CRD boundaries were used (1) to develop a table that listed the spatial relation of each CRD in the conterminous United States to its surrounding CRDs and (2) to determine the counties that were associated with each CRD so that estimates reported for CRDs could be disaggregated to counties. The second geospatial dataset was a modified version of the USDA Farm Resource Boundaries, which was used (1) to determine the Farm Resource Region for each CRD and (2) to develop regional use rates for individual crops when a CRD rate did not exist.

CRDs are defined as multi-county areas that share similar geographic attributes, including soil type, terrain, elevation, and climatic factors, such as mean temperature, annual precipitation, and length of growing season. There are 304 CRDs in the conterminous United States, and most states are divided into 9 CRDs; however, some states, such as Massachusetts and New Hampshire, contain only 1 CRD, whereas Texas has 15 CRDs.

A geospatial vector dataset of CRD boundaries was used to generate a table that enumerates the spatial relation between each of the individual CRDs and the CRDs surrounding each of these ‘primary’ CRDs. For each primary CRD, two concentric rings of CRDs were identified by using a Geographic Information System (GIS) proximity mapping function. CRDs that touched the primary CRD were designated as tier 1 CRDs, and CRDs that touched tier 1 CRDs were designated as tier 2 CRDs. Any CRD could be considered a primary, a tier 1, or a tier 2 CRD, depending on which CRD is central to the area of interest. Figure 3, for example, shows primary CRD 20060 (Kansas CRD 60) and the tier 1 and tier 2 CRDs that are associated with it. When CRD-level pesticide use data were not available, associated tier 1 and tier 2 CRDs were used to calculate pesticide-by-crop rates.
Table 2. EPest crop name and corresponding U.S. Department of Agriculture (USDA) Census of Agriculture crop name(s).

<table>
<thead>
<tr>
<th>EPest crop name</th>
<th>USDA, Census of Agriculture crop name(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alfalfa</td>
<td>Alfalfa hay</td>
</tr>
<tr>
<td>Almonds</td>
<td>Almonds</td>
</tr>
<tr>
<td>Apples</td>
<td>Apples</td>
</tr>
<tr>
<td>Barley</td>
<td>Barley for grain</td>
</tr>
<tr>
<td>Beans and peas</td>
<td>Green lima beans; snap beans; green peas, excluding southern peas; peas, green southern</td>
</tr>
<tr>
<td>Berries</td>
<td>Strawberries</td>
</tr>
<tr>
<td>Bulb crops</td>
<td>Garlic; green onions; dry onions</td>
</tr>
<tr>
<td>Conservation Reserve Program (CRP), long-term acres</td>
<td>Land enrolled in conservation reserve or wetlands reserve programs</td>
</tr>
<tr>
<td>Canola, rapeseed</td>
<td>Canola, other rapeseed</td>
</tr>
<tr>
<td>Cherries</td>
<td>Sweet cherries; tart cherries</td>
</tr>
<tr>
<td>Citrus, other</td>
<td>Other citrus fruit</td>
</tr>
<tr>
<td>Cole crops</td>
<td>Broccoli</td>
</tr>
<tr>
<td>Corn</td>
<td>Corn for grain</td>
</tr>
<tr>
<td>Cotton</td>
<td>Cotton, all</td>
</tr>
<tr>
<td>Cropland for pasture</td>
<td>Cropland used for pasture or grazing</td>
</tr>
<tr>
<td>Cucurbits</td>
<td>Cucumbers and pickles; pumpkins; squash</td>
</tr>
<tr>
<td>Dry beans and peas</td>
<td>Dry lima beans; dry edible beans, excluding limas; dry edible peas; dry southern peas</td>
</tr>
<tr>
<td>Eggplant and peppers</td>
<td>Eggplant; peppers, bell; peppers, chile</td>
</tr>
<tr>
<td>Summer fallow</td>
<td>Summer fallow</td>
</tr>
<tr>
<td>Flax</td>
<td>Flaxseed</td>
</tr>
<tr>
<td>Grapefruit</td>
<td>Grapefruit</td>
</tr>
<tr>
<td>Grapevines</td>
<td>Grapes</td>
</tr>
<tr>
<td>Hay, other</td>
<td>Grass silage, haylage</td>
</tr>
<tr>
<td>Idle cropland, other</td>
<td>Idle cropland, other</td>
</tr>
<tr>
<td>Leafy vegetables, other</td>
<td>Celery; spinach</td>
</tr>
<tr>
<td>Lemons</td>
<td>Lemons</td>
</tr>
<tr>
<td>Lettuce</td>
<td>Lettuce all</td>
</tr>
<tr>
<td>Lots, farmsteads, other</td>
<td>Lots, farmsteads and other</td>
</tr>
<tr>
<td>Melons</td>
<td>Cantaloupes; watermelons</td>
</tr>
<tr>
<td>Nut trees, other</td>
<td>Hazel nuts (filberts); pistachios</td>
</tr>
<tr>
<td>Oats and rye</td>
<td>Oats for grain; rye for grain</td>
</tr>
<tr>
<td>Oranges</td>
<td>Oranges, all</td>
</tr>
<tr>
<td>Pasture/range</td>
<td>Pastureland and rangeland, other than cropland and woodland pastured</td>
</tr>
<tr>
<td>Peaches</td>
<td>Peaches, all</td>
</tr>
<tr>
<td>Peanuts</td>
<td>Peanuts for nuts</td>
</tr>
<tr>
<td>Pears</td>
<td>Pears, all</td>
</tr>
<tr>
<td>Pecans</td>
<td>Pecans</td>
</tr>
<tr>
<td>Potatoes</td>
<td>Potatoes</td>
</tr>
<tr>
<td>Prunes</td>
<td>Plums and prunes</td>
</tr>
<tr>
<td>Rice</td>
<td>Rice</td>
</tr>
<tr>
<td>Roots and tubers</td>
<td>Carrots</td>
</tr>
<tr>
<td>Sorghum</td>
<td>Sorghum for grain; sorghum for sileage or green chop; sorghum for syrup</td>
</tr>
<tr>
<td>Soybeans</td>
<td>Soybeans for beans</td>
</tr>
<tr>
<td>Stone-like fruit, other</td>
<td>Apricots; avocados</td>
</tr>
<tr>
<td>Sugarbeets</td>
<td>Sugar beets for sugar</td>
</tr>
<tr>
<td>Sugarcane</td>
<td>Sugar cane for sugar</td>
</tr>
<tr>
<td>Sunflowers</td>
<td>Sunflower seed all</td>
</tr>
<tr>
<td>Sweet corn</td>
<td>Sweet corn</td>
</tr>
<tr>
<td>Tobacco</td>
<td>Tobacco</td>
</tr>
<tr>
<td>Tomatoes</td>
<td>Tomatoes</td>
</tr>
<tr>
<td>Other vegetables</td>
<td>Artichokes</td>
</tr>
<tr>
<td>Walnuts</td>
<td>Walnuts, english</td>
</tr>
<tr>
<td>Wheat, spring</td>
<td>Durum wheat for grain; other spring wheat for grain</td>
</tr>
<tr>
<td>Wheat, winter</td>
<td>Winter wheat for grain</td>
</tr>
<tr>
<td>Woodland</td>
<td>Total woodland</td>
</tr>
</tbody>
</table>
A geospatial dataset of USDA Farm Resource Regions was used to develop regional pesticide-by-crop use rates for CRDs that were not surveyed and for which a tier 1 or tier 2 rate was not available. In a previous atrazine study (Thelin and Stone, 2010), USDA Farm Production Regions were used to develop regional rates. These boundaries follow state boundaries and often combine large areas that can have different soils, topography, and agricultural practices. The Farm Production Region boundaries were replaced with USDA Farm Resource Regions because these boundaries take into account farm practices and physiographic, soil, and climatic traits (http://www.ers.usda.gov/publications/aib760/aib-760.pdf). Farm Resource Region boundaries conform to CRD boundaries. There are nine Farm Resource Regions, which were further subdivided in cases where the region was not contiguous. For example, the Fruitful Rim (FR) Region is located in parts of the West, Southwest, and Southeastern United States, so this large region was subdivided into four subregions: (1) FR-Northwest, including Washington and parts of Oregon and Idaho; (2) FR-West, including parts of California and Arizona; (3) FR-Texas, including Texas and New Mexico; and (4) FR-Southeast, including Florida and parts of Alabama, Georgia, and South Carolina. Similarly, the Eastern Uplands, Northern Crescent, and Southern Seaboard were divided into eastern and western subregions (fig. 4).

Pesticide-Use Estimates for California

EPest-low and EPest-high estimates for California were not calculated by using the method described in this report; instead, county totals were obtained from the online DPR-PUR database (California Department of Pesticide Regulation, 2010). Since 1990, California has required reporting of all agricultural pesticide use. DPR-PUR includes information on the pesticide applied, location and time of application, and the agricultural crop treated. Annual pesticide-use estimates by crop were retrieved from the online DPR-PUR database and merged with the EPest-low and EPest-high county data after the estimation process was completed for the rest of the country.

Figure 3. Crop Reporting District 20060 (Kansas CRD 60) and neighboring tier 1 and tier 2 Crop Reporting Districts.
Methods for Estimating Pesticide Use

The following sections describe methods developed to estimate agricultural pesticide use for counties in the conterminous United States, except those in California. In order to calculate estimates of pesticide use for counties, pesticide-by-crop use rates were developed for CRDs on the basis of surveyed use data and harvested-crop acreage from the USDA. The resulting pesticide-by-crop use rates are referred to as EPest surveyed-use rates, which are calculated by dividing the amount of pesticide applied to a crop in the CRD by harvested-crop acres. Not every CRD in the conterminous United States was surveyed; therefore, EPest extrapolated rates were developed for unsurveyed CRDs by using surveyed rates from nearby CRDs or surveyed and extrapolated rates from CRDs in the same region. A surveyed or an extrapolated rate, depending on the CRD, was applied to county harvested acreage to estimate pesticide use on individual crops grown in each county of the conterminous United States, except California. The following sections describe (1) the method used to replace false zero values reported in the surveyed use data with inferred data, (2) how the EPest surveyed and extrapolated rates were developed, and (3) the decision process that was followed to assign these EPest rates to counties to produce EPest-high and EPest-low estimates of pesticide use for counties in the conterminous United States.

Figure 4. U.S. Department of Agriculture Farm Resources Regions (http://www.ers.usda.gov/publications/aib760/aib-760.pdf), as subdivided for calculating regional estimated pesticide-use rates.
Processing Zero Values

The surveyed-use data included the following elements: pounds of pesticide applied to a crop, number of crop acres treated, and overall pesticide-by-crop application rate. In some cases, a zero value was reported for one or more of the data elements because of rounding or truncating values of less than one; therefore, a new inferred value was calculated to replace the false zero values as follows:

1. When the pounds applied were reported as zero, but the number of acres treated was greater than zero, and an application rate was reported, then a value for the pounds applied was calculated by multiplying the number of acres treated by the pesticide-by-crop application rate reported for the surveyed CRD.

2. When the number of acres treated and the pounds applied were reported as zero for the surveyed CRD, but an application rate was reported, then it was assumed that the number of acres treated was equal to one, and the pounds applied were equal to the application rate for 1 acre as reported for the CRD.

3. When the pounds applied and application rate were reported as zero for the surveyed CRD, but the number of acres treated was greater than zero, a new application rate could not be calculated. In these cases, the lowest non-zero application rate in the surveyed-use data across all years, pesticides, crops, and CRDs, which was 0.001 pounds per acre annually, was used to estimate the pounds applied (0.001 pounds per acre multiplied by the number of acres treated).

EPest Crop-Use Rates for Surveyed CRDs

EPest surveyed-use rates for 1992 through 2009 were developed for each of the 39 pesticides included in this study by using surveyed-use estimates of pounds of pesticides applied to individual crops and the harvested acreage for these crops reported by USDA. The pesticide-by-crop use rates determined from surveyed-use data for CRDs are based on planted-crop acreage, but were adjusted to harvested acreage for EPest county-level pesticide-by-crop use rates. EPest surveyed pesticide-by-crop use rates were calculated by dividing the pounds of pesticide applied to a crop in a CRD by the harvested-crop acreage in the CRD to yield a use rate per harvested acre—for a specific crop this is referred to as an EPest surveyed pesticide-by-crop use rate. Use rates calculated by using harvested-crop acreage rather than planted acreage can result in a greater rate per acre because, typically, there are fewer harvested acres than planted acres as a result of crop failure. To avoid artificially high use rates caused solely by the difference between planted and harvested acres, the harvested-crop acreage for the CRD and associated counties was adjusted if the CRD harvested-crop acres were less than the surveyed CRD planted-crop acres. Specifically, a county-CRD weighting factor for each crop and year was calculated by determining the percentage that each county’s acreage contributed to the total acreage in the CRD. When the sum of the harvested-crop acreage for counties in the CRD was less than the planted-crop acreage for the CRD reported in the surveyed-use data, the weighting factor was used to adjust the harvested acreage for each county in the CRD to the surveyed-reported planted-crop acreage.

EPest Use Rates for Unsurveyed CRDs—Tier 1, Tier 2, and Regional Use Rates

EPest surveyed-use rates were applied to the harvested-crop acreage in all counties that were part of the surveyed CRDs. Some CRDs, however, were not surveyed for a particular year or combination of years, even though a pesticide could have been used there. For these CRDs, indirect estimates were derived. To ensure that pesticide-use estimates accounted for all acreage that could have been treated, extrapolated use rates were developed for individual pesticides and crops in unsurveyed CRDs through a set of decision rules (fig. 5).

The decision process included developing three types of extrapolated pesticide-by-crop use rates, referred to as tier 1, tier 2, and regional rates. How a use rate was estimated for an unsurveyed CRD depended on the availability of rates from surrounding tier 1 and tier 2 CRDs. For this purpose, the proximity table of CRDs, described previously, was searched to determine if a new rate could be calculated on the basis of rates from tier 1 or tier 2 CRDs. First, the tier 1 CRDs surrounding the unsurveyed CRD were searched, and if one or more surveyed pesticide-by-crop use rates existed, the median rate was used from these surveyed rates, called tier 1 EPest rate, to estimate pesticide-by-crop use for the counties in the unsurveyed CRD. If a tier 1 rate could not be established because there were no surveyed rates available, then tier 2 CRDs were searched to determine if three or more of the tier 2 CRDs had surveyed rates. If so, then the median value of these rates was used as the tier 2 EPest rate which was then applied to the counties in the unsurveyed CRD. Finally, if a tier 1 or tier 2 EPest rate could not be determined, then a regional rate was calculated for the modified USDA Farm Resource Region (described previously) and used for the CRD. Regional rates were the median of all non-zero EPest rates, including surveyed, tier 1, and tier 2 EPest from the same modified USDA Farm Resource Region. To reduce the influence of duplicate extrapolated EPest rates on the calculation of regional rates, duplicate extrapolated rates were removed prior to the calculation. Figure 6 illustrates the process of establishing and assigning EPest extrapolated rates for counties in the Southern Seaboard Region-East by using S-metolachlor on corn as an example.
The Southern Seaboard-East region is composed of 36 CRDs from all or part of 8 states, including Alabama, Delaware, Georgia, Maryland, Mississippi, North Carolina, South Carolina, and Virginia (fig. 6). In 2007, there were surveyed-use data for S-metolachlor on corn in 17 of the 36 CRDs in the region. On the basis of the surveyed rates for the 17 surveyed CRDs, S-metolachlor use on corn was estimated for 180 of 388 counties in the region. There were an additional 208 counties in the region that had corn acreage, but a surveyed rate was not available, so EPest tier 1, tier 2, or regional rates were estimated as described in the following paragraphs.

Tier 1 S-metolachlor-corn rates were estimated for 11 CRDs in the example region and applied to 114 counties in these CRDs. South Carolina CRD 45030, labeled A in figure 6, is used to illustrate how a tier 1 rate is calculated from adjacent tier 1 CRDs. The tier 1 rate was developed for South Carolina CRD 45030 by using surveyed rates from three surrounding CRDs, which had EPest surveyed rates of 0.0095, 0.7093, and 1.123 pounds per harvested acre. There were two other CRDs adjacent to South Carolina 45030, but there were no surveyed rates available for them. In this example, the median of the three available EPest surveyed rates was 0.7093 pounds per harvested acre (North Carolina CRD 37090), and this rate was used as the tier 1 rate to estimate 2007 S-metolachlor use on corn in the nine counties that are part of South Carolina CRD 45030.

Figure 5. Summary of decision process followed to develop EPest rates.
Figure 6. Methods for establishing extrapolated estimates for 2007 S-metolachlor use on corn in the Southern Seaboard-East region for (A) EPest tier 1 rate, (B) EPest tier 2 rate, and (C) EPest regional rate.
In the Southern Seaboard-East region, tier 2 S-metolachlor rates for corn were applied to 25 counties in two CRDs. Georgia CRD 13030, labeled B in figure 6, is an example of determining a tier 2 rate from surrounding CRDs. There were no EPest surveyed rates for S-metolachlor-corn from adjacent CRDs, so tier 2 CRDs were used. A minimum of three rates are required to determine a tier 2 rate, and there were five tier 2 CRDs that had surveyed annual rates of 0.1445, 0.3156, 0.7009, 0.9565, and 1.1229 pounds per harvested acre. The median of these five rates was 0.7009 pounds per harvested acre, which was assigned as the tier 2 rate used to estimate 2007 S-metolachlor use on corn for the nine counties in Georgia CRD 13030.

Finally, regional rates were calculated for 2007 S-metolachlor-corn in the Southern Seaboard-East region and applied to 6 CRDs and 69 counties. Mississippi CRD 28009, labeled C in figure 6, is used to illustrate how the regional rate was calculated from adjacent surveyed, tier 1, and tier 2 CRDs. There were 30 EPest rates available for the region, including 17 surveyed rates, 11 tier 1 rates, and 2 tier 2 rates. In the calculation of a regional rate, a minimum of three surveyed, tier 1, or tier 2 rates are required, and any duplicate extrapolated rates are dropped prior to calculating the median. In calculating the median regional rate, 7 duplicate rates were dropped, including 6 tier 1 rates and 1 tier 2 rate, so that 17 surveyed rates, 5 tier 1 rates, and 1 tier 2 rate were used to find the 2007 median rate of 0.3069 pounds per harvested acre of corn.

EPest-Low and EPest-High Estimates

Two variations on the method for estimating county pesticide use were developed to yield EPest-low and EPest-high estimates for counties in the conterminous United States other than California. Both methods incorporated surveyed and extrapolated rates to estimate pesticide use for counties, but EPest-low and EPest-high estimations differed in how they treated situations when a CRD was surveyed and pesticide use was not reported for a particular pesticide-by-crop combination (fig. 5). If use of a pesticide on a crop was not reported in a surveyed CRD, EPest-low reports zero use in the CRD for that pesticide-by-crop combination. EPest-high, however, treats the unreported use for that pesticide-by-crop combination in the CRD as unsurveyed, and pesticide-by-crop use rates from neighboring CRDs and, in some cases, CRDs within the same USDA Farm Resource Region are used to calculate the pesticide-by-crop EPest-high rate for the CRD.

Results

EPest-low and EPest-high totals were calculated from 1992 through 2009 for the 39 selected pesticides by using the methods described in this report. EPest-low totals, including California, were available for a low of 3,021 counties in 2008 to a high of 3,056 counties in 1992. The EPest-high method produced estimates for 3,049 counties in 2000 and 3,060 counties in 1994, including those in California. Pesticide-use estimates for counties in California are available from 1992 through 2009 for 35 of the 39 pesticides in this study. Use estimates are not available for the pesticides acetochlor, chlorimuron, propachlor, and terbufos because these pesticides were not used in California. For counties in California, there is a single county estimate, rather than a high and low estimate per pesticide by crop and year, which represents the sum of individual pesticide applications in a county reported by DPR-PUR (ftp://pestreg.cdpr.ca.gov/pub/outgoing/pur_archives).

EPest-low and EPest-high county pesticide-use totals for 1992–2009 are available from http://water.usgs.gov/nawqa/pnsp/usage/maps/. The county estimates represent the sum of individual pesticides used on all row, fruit, nut, and vegetable crops and selected agricultural land uses, such as summer fallow, pasture, and woodland. Appendix 1 provides the annual EPest-low and EPest-high national totals for each of the 39 pesticides, the total pounds applied to individual crops, and the percentage of the national pesticide total each crop represents. With the exception of acetochlor, fonofos, propachlor, and S-metolachlor, annual estimates are available for 1992 through 2009. Acetochlor estimates are available beginning in 1994, when it was first registered for use, while estimates for fonofos and propachlor are reported for 1992 through 2005, and S-metolachlor estimates are available beginning in 1997.

EPest-low and EPest-high national use totals for each of the 39 pesticides are shown in appendix 2 along with the amount and percentage of the total estimate that was derived from EPest surveyed, tier 1, tier 2, and regional rates, and from the DPR-PUR for California. Across all pesticides and years, the amount added to the EPest-low national total by extrapolated tier 1, tier 2, or regional rates, ranged from less than 1 percent for most compounds for one or more years to as much as 36 percent for terbacil use in 2003. A greater proportion of the EPest-high national total was derived from extrapolated rates, which ranged from less than 1 percent to as much as 94 percent for butylate use in 2007.
About 23 percent of the EPest-low and EPest-high annual national use totals were within 10 percent of one another and about 45 percent were within 25 percent of one another. EPest-high totals were more than double EPest-low totals for the pesticides alachlor, butylate, carbofuran, cyanazine, ethoprophos, linuron, methyl parathion, metolachlor, pebulate, propachlor, and terbacil for at least six of the years estimated. The extrapolated rates for surveyed CRDs used in EPest-high methods more than doubled the national total pesticide use for some years and pesticides for some specialty crops; for major crops, such as corn and alfalfa; and for some land uses, such as summer fallow, pasture and rangeland.

For the pesticides included in this study, EPest-low annual-use totals were less than or equal to EPest-high annual-use totals, as shown in appendix 2. However, EPest-low annual-use totals can be greater than EPest-high totals when the EPest-low pesticide-by-crop regional rate is greater than the EPest-high rate. EPest regional pesticide-by-crop rates are determined by using a minimum of three CRDs, and, typically, EPest-high regional rates were determined from a greater number of CRDs than EPest-low regional rates. In some cases, rates from additional CRDs can result in an EPest-high regional pesticide-by-crop rate that is less than the EPest-low regional rate. For example, if the EPest-low regional rate were determined from five rates—158, 54, 31.8, 9.68, and 5 pounds per acre—then the median would be 31.8 pounds of pesticide per harvested acre. The rates from these same five CRDs along with the EPest-high rates from any other CRDs in the region would be used to calculate the EPest-high regional rate. For example, if 158, 54, 31.8, 9.68, 9.05, 6.7, and 5 pounds of pesticide per crop acre were the rates used to determine the EPest-high regional rate, the EPest-high pesticide-by-crop regional rate would be 9.68 pounds of pesticide per harvested acre. Although these two rates were for the same counties in the region, the EPest-low total would be greater than the EPest-high use total.

In cases when a CRD was not surveyed, and a tier 1, tier 2, or regional rate was available, both EPest-low and EPest-high methods determined a pesticide-by-crop rate. In general, extrapolated rates for non-surveyed CRDs represented a greater percentage of use in more recent years because some pesticides were reported less frequently and some crops were not surveyed as extensively. EPest tier 1, tier 2, and regional rates have inherently greater uncertainty than rates for surveyed CRDs because a pesticide could have been applied to a localized area in response to a pest infestation, while the same crop grown in another part of the same region would not be managed in the same way, which can result in misrepresentative estimates of pesticide use. In addition, some EPest-high annual totals for pesticides that have been replaced or phased out, such as metolachlor and cyanazine, can be inaccurate because the EPest-high method assumes if a CRD was surveyed and an estimate for the pesticide was not reported, then an extrapolated rate could be used to estimate pesticide use.

Comparison of EPest National Estimates with Other Sources

National annual pesticide-use estimates developed by using EPest-low and EPest-high methods were compared with independently published estimates for seven herbicides. These comparisons were limited to acetochlor, alachlor, atrazine, EPTC, glyphosate, propanil, and trifluralin and to selected years because of limited data from the published sources. EPest totals for 1997, 2001, and 2007 were compared to (1) agricultural-use estimates published by the U.S. Environmental Protection Agency (USEPA; Kiely and others, 2004; Grube and others, 2011), (2) NASS-Agricultural Chemical Use (ACU) data (National Agricultural Statistics Service, 2008; hereinafter, referred to as NASS), and (3) National Pesticide Use Database (NPUD) estimates (Crop Protection Research Institute, 2006). NASS annual data were published as the “Total of Program States” in pounds per year and represent the amount of pesticide estimated for the states and crops that were surveyed for a specific year. Thus, the NASS national totals shown in these analyses are not intended to represent total use for all states or crops but are included as a point of reference. The USEPA estimates were reported as a range for each pesticide on agricultural crops as determined from a variety of public and proprietary data sources. Estimates for some pesticides and years were not available for each set of analyses, so comparisons were made for the years with the most complete data from each of the sources. Annual state estimates for the pesticides compared were available from EPest for 1992 through 2009; USEPA for 1997, 2001, 2003, 2005, and 2007; NPUD for 1992, 1997, 2002; and NASS for 1997, 2001, and 2006. In addition, NASS use estimates for propanil only were available for 2006. The NPUD estimates used in the 2001 analysis represent use for 2002, and the NPUD estimates were not included in the 2006–07 analysis. Lastly, the 2006–07 analysis did not include the USEPA use estimates for alachlor and EPTC.

Comparisons of EPest-low and EPest-high total use estimates with the USEPA, NASS, and NPUD data for 1997, 2001–02, and 2006–07 for the seven herbicides are shown in figures 7A, 7B, and 7C. With the exceptions of the EPest-low 2001 estimate for alachlor, the 2007 EPest-low and EPest-high estimates for propanil, and the 2007 EPest-high estimates for trifluralin, EPest and USEPA estimates differed from one another by less than 20 percent. NASS use estimates are not complete national estimates, so they were less than both EPest-low and EPest-high totals, and most 2006 NASS use estimates were a fraction of both USEPA and EPest totals because the number of the crops and states that were surveyed and reported by NASS was reduced in 2006. Overall, the comparisons illustrated in figure 7 indicate a high level of agreement between EPest totals and both the USEPA and NPUD estimates, although none of these three sources of national estimates is known to be a better estimate of true use than the others.
Figure 7. Comparison of EPest-low and EPest-high national total use of selected pesticides with national use estimates from other sources for (A) 1997 Agricultural-use estimates, (B) 2001–02 Agricultural-use estimates, and (C) 2006–07 Agricultural-use estimates. NASS, National Agricultural Statistics Service; USEPA, U.S. Environmental Protection Agency; EPest, estimated pesticide use; National Pesticide Use Database.
Comparisons of EPest and NASS State Estimates

The national comparisons provide an aggregated assessment of how comparable EPest totals are to other published sources. In order to determine how well EPest use estimates represented regional and state level amounts and patterns of pesticide use, a second set of evaluations were made that compared EPest and NASS estimates for (1) state totals for individual pesticides and (2) state totals for individual pesticide-by-crop combinations. The comparisons between EPest and NASS state and state-by-crop estimates were the most controlled evaluations possible.

Comparison of State Total-Use Estimates

State-level comparisons were made for individual pesticides that have four or more estimates for combinations of states, crops, and years common to both EPest and NASS use estimates. Estimates for 33 pesticides and 34 states were compared for one or more years from 1992 through 2006. The pesticides included 24 herbicides, 8 insecticides, and 1 fungicide. Depending on the state and year, estimated state totals represented the sum of a pesticide used on one or more crops, including barley, corn, cotton, peanuts, rice, sorghum, soybeans, spring wheat, sunflowers, tobacco, and winter wheat. For each comparison, the difference between EPest and NASS use estimates was evaluated as the relative error (RE) for EPest relative to NASS estimates, or (EPest – NASS) / NASS, and RE was used to show the distribution of differences in state estimates for each pesticide (fig. 8). In figures 8A (EPest-low) and 8B (EPest-high), positive RE values represent EPest totals that were greater than NASS use estimates and negative RE values represent EPest totals that were less than NASS use estimates. Although differences between EPest and NASS estimates are expressed as proportional errors relative to NASS estimates in order to facilitate clear comparisons to publicly available NASS estimates, neither estimate can be considered a more certain estimate of true values than the other. The number of state-by-year combinations for each pesticide is indicated at the bottom of the plot (fig. 8). For the different pesticides, the number of state-by-year combinations used in the comparisons ranged from as few as 5 to as many as 443.

Of the 33 pesticides evaluated, less than one-third—10 EPest-low and 8 EPest-high—had median RE values significantly different from zero based on the 95-percent confidence interval on the median RE. For EPest-low, 6 of the 10 pesticides that were significantly different from NASS use estimates tended to have lower estimates compared to NASS (acifluorfen, bentazon, butylate, methomyl, methyl parathion, and propachlor), and the rest (atrazine, fluometuron, nicosulfuron, and propargite) tended to be greater than NASS. Compared to NASS use estimates, seven of the eight significantly different EPest-high totals tended toward overestimation (atrazine, fluometuron, fonofos, metribuzin, nicosulfuron, propargite, and trifluralin), and only one pesticide (methyl parathion) tended toward underestimation. The inter-quartile ranges for both sets of estimates generally were symmetrical for most pesticides, and there was a relatively small proportion of outlying individual values—generally fewer than 10 percent. Several pesticides showed wide confidence intervals around the median, and some had only a small number of estimates to compare, including propachlor and thiobencarb, among others.
Figure 8. Distributions of relative error between EPest and National Agricultural Statistics Service (NASS) use estimates. Relative error expressed as (EPest - NASS)/NASS. Estimated state totals represent the sum of use on one or more crops, including barley, corn, cotton, peanuts, rice, sorghum, soybeans, spring wheat, sunflowers, tobacco, and winter wheat. Numbers for each pesticide represent the number of state-by-year combinations compared.
Comparison of State Estimates for Individual Pesticide-by-Crop Combinations

EPest and NASS use estimates for individual states and crops were compared for selected years from 1992 to 2006, which are the most direct comparisons possible with the data available. The comparisons were limited to pesticide-by-crop combinations that had both EPest and NASS use estimates for at least 10 state-year combinations. This requirement allowed one or more crop comparisons for 29 pesticides, including 21 herbicides, 7 insecticides, and 1 fungicide, for one or more of the following crops: corn, cotton, rice, soybeans, spring wheat, and winter wheat. There were 17 pesticides compared for corn, 13 pesticides for cotton, 9 pesticides for soybeans, 4 pesticides for winter wheat, 4 pesticides for spring wheat, and a single pesticide for rice. Although NASS also reported pesticide-use estimates for other crops included in the all-crops state totals, such as sorghum, tobacco, peanuts, and barley, there were too few estimates for each of these crops to include them in the crop-specific comparisons.

The distribution of RE values for all available state-year combinations for each of the 47 pesticide-by-crop combinations are shown by crop (rice excluded) in figures 9A–9E for EPest-low totals and in figures 10A–10E for EPest-high totals. The figures show that the range of RE values for EPest-low totals for most pesticide-by-crop combinations was less than for EPest-high totals and contained fewer outliers, indicating that EPest-low totals tended to approximate NASS estimates more accurately than EPest-high totals.

Similarly, more than two-thirds (33 of 48) of EPest-low pesticide-by-crop combinations had median REs that were 15 percent or less, whereas just over half (26 of 48) of the EPest-high totals had median REs that were less than 15 percent or less (tables 3 and 4). Of the 15 EPest-low pesticide-by-crop combinations that had median REs that differed by 15 percent or more, 13 pesticide crop-combinations were less than NASS use estimates and 2 pesticide-by-crop combinations were greater than NASS use estimates (table 3). There were 21 EPest-high pesticide-by-crop combinations that had median REs greater than 15 percent, with 13 combinations greater than NASS use estimates and 8 that were less (table 4). These results were consistent with the aggregated state total comparisons presented previously, and overall, these comparisons indicated a reasonable agreement between EPest and NASS use estimates, with somewhat better agreement for EPest-low than high estimates. Nevertheless, some pesticide-by-crop combinations showed substantial differences in the estimates for specific states and years.

A combination of statistical tests were used to compare EPest and NASS use estimates for the pesticide-by-crop combinations. The Wilcoxon signed rank sum test (Conover, 1980; Lehmann, 1975) was used to further evaluate differences between magnitudes of EPest and NASS annual use estimates for each pesticide-by-crop combination with sufficient state-year combinations. This non-parametric test evaluates whether the median difference between paired estimates is significantly different than zero, where significance was assigned to a probability (p) of less than 0.05 (two-tailed test). Comparisons that are not statistically significant can indicate agreement between estimates or also can indicate variability in the sample too great to establish significant differences. To help assess the degree of correlation between two ranked pairs of estimates, the Spearman rank correlation coefficient (r) was used, where values range from 0 to 1, and 1 indicates perfect agreement between estimates. The p-value from the Wilcoxon test, the Spearman correlation coefficient (r), the median RE, and the number of state/year combinations used in the evaluations of the comparisons to NASS use estimates are shown for each pesticide and crop combination in table 3 for EPest-low and table 4 for EPest-high.

The strongest agreement between estimates is indicated by statistically insignificant p-values, correlation coefficients approaching 1, and a low median and range for RE values. Pesticides evaluated in this study that met these criteria included acetochlor, cyanazine, and terbufos use estimates for corn, as well as chlorimuron and bentazon use estimates for soybeans. Some estimate comparisons had significantly different medians, but still showed strong correlation and a low RE value; examples include estimates for atrazine and metolachlor use for corn and trifluralin use estimates for cotton. Poor agreement between estimates was indicated by large RE values and low correlation coefficients for both significant and insignificant comparisons of medians. A small sample size can reduce the power of the tests, however, and smaller sample sizes were often associated with the lower correlation coefficients among these comparisons, particularly when RE values were greater than 0.15.

More than half of the comparisons of pesticide-by-crop combinations had RE values less than 0.15, and the majority of these comparisons were not significantly different and had correlation coefficients greater than 0.75. Of the 48 pesticide-by-crop combinations with 10 or more state-by-year combinations, 12 of the EPest-low pesticide-by-crop totals and 17 of the EPest-high totals significantly differed (p < 0.05) from the NASS use estimates. Of the comparisons with significant differences, two-thirds or more of the pesticide-by-crop combinations had correlation coefficients greater than 0.75, especially when comparisons had RE values of 0.15 or less. Comparisons that did not have significant differences tended to have lower RE values than comparisons that had significant differences. Nevertheless, about a quarter of all the comparisons had RE values greater than 0.15, but did not have significant differences. All of these had sample numbers less than 40, and most had fewer than 20 samples for comparison. Also, most had correlation coefficients less than 0.75, which demonstrates the importance of having a sample number large enough to achieve a good comparison of estimates.
Figure 9. Distribution of relative error between E Pest-low and National Agricultural Statistics Service (NASS) use estimates for (A) corn, (B) cotton, (C) soybeans, (D) spring wheat, and (E) winter wheat. Relative error expressed as (EPEST - NASS)/NASS.
Figure 10. Distribution of relative error between EPest-high and National Agricultural Statistics Service (NASS) use estimates for (A) corn, (B) cotton, (C) soybeans, (D) spring wheat, and (E) winter wheat. Relative error expressed as (EPEST - NASS)/NASS.

[Abbreviations: N, number of estimates compared; P, probability of significance; >, greater than; <, less than; –, no data]

<table>
<thead>
<tr>
<th>Pesticide</th>
<th>Type</th>
<th>N</th>
<th>Wilcoxon signed rank, P (two-tailed)</th>
<th>Wilcoxon signed rank, P (NASS >EPest)</th>
<th>Wilcoxon signed rank, P (NASS <EPest)</th>
<th>Median relative error</th>
<th>Spearman correlation coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetochlor</td>
<td>Herbicide</td>
<td>98</td>
<td>0.19</td>
<td>0.90</td>
<td>0.10</td>
<td>0.07</td>
<td>0.93</td>
</tr>
<tr>
<td>Acifluorfen</td>
<td>Herbicide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Alachlor</td>
<td>Herbicide</td>
<td>99</td>
<td>0.13</td>
<td>0.94</td>
<td>0.06</td>
<td>0.08</td>
<td>0.83</td>
</tr>
<tr>
<td>Atrazine</td>
<td>Herbicide</td>
<td>146</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.07</td>
<td>0.97</td>
</tr>
<tr>
<td>Bentazon</td>
<td>Herbicide</td>
<td>17</td>
<td>0.01</td>
<td>0.01</td>
<td>0.99</td>
<td>(0.39)</td>
<td>0.42</td>
</tr>
<tr>
<td>Bromoxynil</td>
<td>Herbicide</td>
<td>62</td>
<td>0.29</td>
<td>0.15</td>
<td>0.86</td>
<td>(0.09)</td>
<td>0.85</td>
</tr>
<tr>
<td>Butylate</td>
<td>Herbicide</td>
<td>16</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>(0.47)</td>
<td>0.91</td>
</tr>
<tr>
<td>Carbofuran</td>
<td>Insecticide</td>
<td>22</td>
<td>0.18</td>
<td>0.09</td>
<td>0.92</td>
<td>(0.22)</td>
<td>0.68</td>
</tr>
<tr>
<td>Chlorimuron</td>
<td>Herbicide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Cynazine</td>
<td>Herbicide</td>
<td>76</td>
<td>0.20</td>
<td>0.90</td>
<td>0.10</td>
<td>0.07</td>
<td>0.92</td>
</tr>
<tr>
<td>EPTC</td>
<td>Herbicide</td>
<td>27</td>
<td>0.24</td>
<td>0.12</td>
<td>0.88</td>
<td>(0.13)</td>
<td>0.60</td>
</tr>
<tr>
<td>Fluometuron</td>
<td>Herbicide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Fonofos</td>
<td>Insecticide</td>
<td>17</td>
<td>0.85</td>
<td>0.59</td>
<td>0.43</td>
<td>(0.03)</td>
<td>0.72</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>Herbicide</td>
<td>121</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.34</td>
<td>0.78</td>
</tr>
<tr>
<td>Linuron</td>
<td>Herbicide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Methomyl</td>
<td>Insecticide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Methyl parathion</td>
<td>Insecticide</td>
<td>11</td>
<td>0.15</td>
<td>0.07</td>
<td>0.94</td>
<td>(0.24)</td>
<td>0.32</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>Herbicide</td>
<td>130</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>(0.10)</td>
<td>0.87</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>Herbicide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>Herbicide</td>
<td>127</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.14</td>
<td>0.84</td>
</tr>
<tr>
<td>Norflurazon</td>
<td>Herbicide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Oxamyl</td>
<td>Insecticide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Phorate</td>
<td>Insecticide</td>
<td>14</td>
<td>0.86</td>
<td>0.60</td>
<td>0.43</td>
<td>0.03</td>
<td>0.50</td>
</tr>
<tr>
<td>Propanil</td>
<td>Herbicide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>Fungicide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>S-Metolachlor</td>
<td>Herbicide</td>
<td>39</td>
<td>0.06</td>
<td>0.97</td>
<td>0.03</td>
<td>0.08</td>
<td>0.90</td>
</tr>
<tr>
<td>Terbufos</td>
<td>Insecticide</td>
<td>76</td>
<td>0.29</td>
<td>0.15</td>
<td>0.86</td>
<td>(0.05)</td>
<td>0.83</td>
</tr>
<tr>
<td>Triallate</td>
<td>Herbicide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Trifluralin</td>
<td>Herbicide</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>
Table 3. Summary of statistics from comparison of Epest-low and National Agricultural Statistics Service (NASS) pesticide-by-crop estimates.—Continued

[Abbreviations: N, number of estimates compared; P, probability of significance; >, greater than; <, less than; –, no data]

<table>
<thead>
<tr>
<th>Pesticide Type</th>
<th>Pesticide Type</th>
<th>N</th>
<th>Wilcoxon signed rank, P(two-tailed)</th>
<th>Wilcoxon signed rank, P (NASS > Epest)</th>
<th>Wilcoxon signed rank, P (NASS < Epest)</th>
<th>Median relative error</th>
<th>Spearman correlation coefficient</th>
<th>N</th>
<th>Wilcoxon signed rank, P(two-tailed)</th>
<th>Wilcoxon signed rank, P (NASS > Epest)</th>
<th>Wilcoxon signed rank, P (NASS < Epest)</th>
<th>Median relative error</th>
<th>Spearman correlation coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acetochlor</td>
<td>Herbicide</td>
<td>68</td>
<td>0.06</td>
<td>0.03</td>
<td>0.97</td>
<td>0.01</td>
<td>0.81</td>
<td>24</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>0.01</td>
<td>0.85</td>
</tr>
<tr>
<td>Acifluorfen</td>
<td>Herbicide</td>
<td>60</td>
<td>0.85</td>
<td>0.42</td>
<td>0.58</td>
<td>0.04</td>
<td>0.69</td>
<td>14</td>
<td>0.86</td>
<td>0.43</td>
<td>0.60</td>
<td>0.06</td>
<td>0.74</td>
</tr>
<tr>
<td>Alachlor</td>
<td>Herbicide</td>
<td>100</td>
<td>0.22</td>
<td>0.11</td>
<td>0.89</td>
<td>0.08</td>
<td>0.89</td>
<td>35</td>
<td>0.68</td>
<td>0.34</td>
<td>0.67</td>
<td>0.04</td>
<td>0.85</td>
</tr>
<tr>
<td>Atrazine</td>
<td>Herbicide</td>
<td>50</td>
<td>0.02</td>
<td>0.10</td>
<td>0.97</td>
<td>0.03</td>
<td>0.97</td>
<td>125</td>
<td>0.16</td>
<td>0.92</td>
<td>0.08</td>
<td>0.03</td>
<td>0.82</td>
</tr>
<tr>
<td>Bentazon</td>
<td>Herbicide</td>
<td>100</td>
<td>0.85</td>
<td>0.42</td>
<td>0.58</td>
<td>0.04</td>
<td>0.69</td>
<td>10</td>
<td>0.85</td>
<td>0.34</td>
<td>0.67</td>
<td>0.04</td>
<td>0.85</td>
</tr>
<tr>
<td>Bromoxynil</td>
<td>Herbicide</td>
<td>100</td>
<td>0.85</td>
<td>0.42</td>
<td>0.58</td>
<td>0.04</td>
<td>0.69</td>
<td>100</td>
<td>0.85</td>
<td>0.34</td>
<td>0.67</td>
<td>0.04</td>
<td>0.85</td>
</tr>
<tr>
<td>Butylate</td>
<td>Herbicide</td>
<td>100</td>
<td>0.85</td>
<td>0.42</td>
<td>0.58</td>
<td>0.04</td>
<td>0.69</td>
<td>100</td>
<td>0.85</td>
<td>0.34</td>
<td>0.67</td>
<td>0.04</td>
<td>0.85</td>
</tr>
<tr>
<td>Carbofuran</td>
<td>Herbicide</td>
<td>100</td>
<td>0.85</td>
<td>0.42</td>
<td>0.58</td>
<td>0.04</td>
<td>0.69</td>
<td>100</td>
<td>0.85</td>
<td>0.34</td>
<td>0.67</td>
<td>0.04</td>
<td>0.85</td>
</tr>
<tr>
<td>Chlorimuron</td>
<td>Herbicide</td>
<td>100</td>
<td>0.85</td>
<td>0.42</td>
<td>0.58</td>
<td>0.04</td>
<td>0.69</td>
<td>100</td>
<td>0.85</td>
<td>0.34</td>
<td>0.67</td>
<td>0.04</td>
<td>0.85</td>
</tr>
<tr>
<td>Cyazinone</td>
<td>Herbicide</td>
<td>100</td>
<td>0.85</td>
<td>0.42</td>
<td>0.58</td>
<td>0.04</td>
<td>0.69</td>
<td>100</td>
<td>0.85</td>
<td>0.34</td>
<td>0.67</td>
<td>0.04</td>
<td>0.85</td>
</tr>
<tr>
<td>Cylophos</td>
<td>Herbicide</td>
<td>100</td>
<td>0.85</td>
<td>0.42</td>
<td>0.58</td>
<td>0.04</td>
<td>0.69</td>
<td>100</td>
<td>0.85</td>
<td>0.34</td>
<td>0.67</td>
<td>0.04</td>
<td>0.85</td>
</tr>
<tr>
<td>Cytophos</td>
<td>Herbicide</td>
<td>100</td>
<td>0.85</td>
<td>0.42</td>
<td>0.58</td>
<td>0.04</td>
<td>0.69</td>
<td>100</td>
<td>0.85</td>
<td>0.34</td>
<td>0.67</td>
<td>0.04</td>
<td>0.85</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>Herbicide</td>
<td>100</td>
<td>0.85</td>
<td>0.42</td>
<td>0.58</td>
<td>0.04</td>
<td>0.69</td>
<td>100</td>
<td>0.85</td>
<td>0.34</td>
<td>0.67</td>
<td>0.04</td>
<td>0.85</td>
</tr>
<tr>
<td>Lepidocalix</td>
<td>Herbicide</td>
<td>100</td>
<td>0.85</td>
<td>0.42</td>
<td>0.58</td>
<td>0.04</td>
<td>0.69</td>
<td>100</td>
<td>0.85</td>
<td>0.34</td>
<td>0.67</td>
<td>0.04</td>
<td>0.85</td>
</tr>
<tr>
<td>Methomyl</td>
<td>Herbicide</td>
<td>100</td>
<td>0.85</td>
<td>0.42</td>
<td>0.58</td>
<td>0.04</td>
<td>0.69</td>
<td>100</td>
<td>0.85</td>
<td>0.34</td>
<td>0.67</td>
<td>0.04</td>
<td>0.85</td>
</tr>
<tr>
<td>Methyl parathion</td>
<td>Herbicide</td>
<td>100</td>
<td>0.85</td>
<td>0.42</td>
<td>0.58</td>
<td>0.04</td>
<td>0.69</td>
<td>100</td>
<td>0.85</td>
<td>0.34</td>
<td>0.67</td>
<td>0.04</td>
<td>0.85</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>Herbicide</td>
<td>100</td>
<td>0.85</td>
<td>0.42</td>
<td>0.58</td>
<td>0.04</td>
<td>0.69</td>
<td>100</td>
<td>0.85</td>
<td>0.34</td>
<td>0.67</td>
<td>0.04</td>
<td>0.85</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>Herbicide</td>
<td>100</td>
<td>0.85</td>
<td>0.42</td>
<td>0.58</td>
<td>0.04</td>
<td>0.69</td>
<td>100</td>
<td>0.85</td>
<td>0.34</td>
<td>0.67</td>
<td>0.04</td>
<td>0.85</td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>Herbicide</td>
<td>100</td>
<td>0.85</td>
<td>0.42</td>
<td>0.58</td>
<td>0.04</td>
<td>0.69</td>
<td>100</td>
<td>0.85</td>
<td>0.34</td>
<td>0.67</td>
<td>0.04</td>
<td>0.85</td>
</tr>
<tr>
<td>Norflurazon</td>
<td>Herbicide</td>
<td>100</td>
<td>0.85</td>
<td>0.42</td>
<td>0.58</td>
<td>0.04</td>
<td>0.69</td>
<td>100</td>
<td>0.85</td>
<td>0.34</td>
<td>0.67</td>
<td>0.04</td>
<td>0.85</td>
</tr>
<tr>
<td>Oxamyl</td>
<td>Herbicide</td>
<td>100</td>
<td>0.85</td>
<td>0.42</td>
<td>0.58</td>
<td>0.04</td>
<td>0.69</td>
<td>100</td>
<td>0.85</td>
<td>0.34</td>
<td>0.67</td>
<td>0.04</td>
<td>0.85</td>
</tr>
<tr>
<td>Phorate</td>
<td>Herbicide</td>
<td>100</td>
<td>0.85</td>
<td>0.42</td>
<td>0.58</td>
<td>0.04</td>
<td>0.69</td>
<td>100</td>
<td>0.85</td>
<td>0.34</td>
<td>0.67</td>
<td>0.04</td>
<td>0.85</td>
</tr>
<tr>
<td>Propanil</td>
<td>Herbicide</td>
<td>100</td>
<td>0.85</td>
<td>0.42</td>
<td>0.58</td>
<td>0.04</td>
<td>0.69</td>
<td>100</td>
<td>0.85</td>
<td>0.34</td>
<td>0.67</td>
<td>0.04</td>
<td>0.85</td>
</tr>
<tr>
<td>Propanil</td>
<td>Herbicide</td>
<td>100</td>
<td>0.85</td>
<td>0.42</td>
<td>0.58</td>
<td>0.04</td>
<td>0.69</td>
<td>100</td>
<td>0.85</td>
<td>0.34</td>
<td>0.67</td>
<td>0.04</td>
<td>0.85</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>Herbicide</td>
<td>100</td>
<td>0.85</td>
<td>0.42</td>
<td>0.58</td>
<td>0.04</td>
<td>0.69</td>
<td>100</td>
<td>0.85</td>
<td>0.34</td>
<td>0.67</td>
<td>0.04</td>
<td>0.85</td>
</tr>
<tr>
<td>S-Metolachlor</td>
<td>Herbicide</td>
<td>100</td>
<td>0.85</td>
<td>0.42</td>
<td>0.58</td>
<td>0.04</td>
<td>0.69</td>
<td>100</td>
<td>0.85</td>
<td>0.34</td>
<td>0.67</td>
<td>0.04</td>
<td>0.85</td>
</tr>
<tr>
<td>Terbufos</td>
<td>Herbicide</td>
<td>100</td>
<td>0.85</td>
<td>0.42</td>
<td>0.58</td>
<td>0.04</td>
<td>0.69</td>
<td>100</td>
<td>0.85</td>
<td>0.34</td>
<td>0.67</td>
<td>0.04</td>
<td>0.85</td>
</tr>
<tr>
<td>Triallate</td>
<td>Herbicide</td>
<td>100</td>
<td>0.85</td>
<td>0.42</td>
<td>0.58</td>
<td>0.04</td>
<td>0.69</td>
<td>100</td>
<td>0.85</td>
<td>0.34</td>
<td>0.67</td>
<td>0.04</td>
<td>0.85</td>
</tr>
<tr>
<td>Trifluralin</td>
<td>Herbicide</td>
<td>100</td>
<td>0.85</td>
<td>0.42</td>
<td>0.58</td>
<td>0.04</td>
<td>0.69</td>
<td>100</td>
<td>0.85</td>
<td>0.34</td>
<td>0.67</td>
<td>0.04</td>
<td>0.85</td>
</tr>
</tbody>
</table>
Table 3. Summary of statistics from comparison of EPest-low and National Agricultural Statistics Service (NASS) pesticide-by-crop estimates.—Continued

<table>
<thead>
<tr>
<th>Pesticide</th>
<th>Type</th>
<th>N</th>
<th>Wilcoxon signed rank, P (two-tailed)</th>
<th>Wilcoxon signed rank, P (NASS >EPest)</th>
<th>Wilcoxon signed rank, P (NASS <EPest)</th>
<th>Median relative error</th>
<th>Spearman correlation coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter wheat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetochlor</td>
<td>Herbicide</td>
<td>29</td>
<td>0.70</td>
<td>0.66</td>
<td>0.34</td>
<td>0.00</td>
<td>0.60</td>
</tr>
<tr>
<td>Acifluorfen</td>
<td>Herbicide</td>
<td>16</td>
<td>0.53</td>
<td>0.26</td>
<td>0.75</td>
<td>(0.41)</td>
<td>0.11</td>
</tr>
<tr>
<td>Alachlor</td>
<td>Herbicide</td>
<td>14</td>
<td>0.81</td>
<td>0.40</td>
<td>0.62</td>
<td>(0.27)</td>
<td>0.78</td>
</tr>
<tr>
<td>Atrazine</td>
<td>Herbicide</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bentazon</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoxynil</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Butylate</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbofuran</td>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorimuron</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyazine</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPTC</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluometuron</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fonofos</td>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyphosate</td>
<td>Herbicide</td>
<td>38</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>(0.58)</td>
<td>0.58</td>
</tr>
<tr>
<td>Linuron</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methomyl</td>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl parathion</td>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metolachlor</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metribuzin</td>
<td>Herbicide</td>
<td>16</td>
<td>0.53</td>
<td>0.26</td>
<td>0.75</td>
<td>(0.41)</td>
<td>0.11</td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norflurazon</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxamyl</td>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phorate</td>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propanil</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td>Fungicide</td>
<td>14</td>
<td>0.81</td>
<td>0.40</td>
<td>0.62</td>
<td>(0.27)</td>
<td>0.78</td>
</tr>
<tr>
<td>S-Metolachlor</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbufos</td>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triallate</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trifluralin</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[Abbreviations: N, number of estimates compared; P, probability of significance; >, greater than; <, less than; –, no data]

[Abbreviations: N, number of estimates compared; P, probability of significance; <, less than; >, greater than; –, no data]

<table>
<thead>
<tr>
<th>Pesticide</th>
<th>Type</th>
<th>N</th>
<th>Wilcoxon signed rank, P (two-tailed)</th>
<th>Wilcoxon signed rank, P (NASS > EPest)</th>
<th>Wilcoxon signed rank, P (NASS < EPest)</th>
<th>Median relative error</th>
<th>Spearman correlation coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetochlor</td>
<td>Herbicide</td>
<td>98</td>
<td>0.07</td>
<td>0.96</td>
<td>0.36</td>
<td>0.08</td>
<td>0.93</td>
</tr>
<tr>
<td>Acifluorfen</td>
<td>Herbicide</td>
<td>99</td>
<td>0.01</td>
<td>1.00</td>
<td>0.00</td>
<td>0.13</td>
<td>0.82</td>
</tr>
<tr>
<td>Alachlor</td>
<td>Herbicide</td>
<td>146</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.07</td>
<td>0.97</td>
</tr>
<tr>
<td>Atrazine</td>
<td>Herbicide</td>
<td>17</td>
<td>0.04</td>
<td>0.22</td>
<td>0.98</td>
<td>(0.30)</td>
<td>0.34</td>
</tr>
<tr>
<td>Bentazon</td>
<td>Herbicide</td>
<td>62</td>
<td>0.96</td>
<td>0.53</td>
<td>0.48</td>
<td>(0.03)</td>
<td>0.85</td>
</tr>
<tr>
<td>Bromoxynil</td>
<td>Herbicide</td>
<td>16</td>
<td>0.19</td>
<td>0.10</td>
<td>0.91</td>
<td>(0.16)</td>
<td>0.81</td>
</tr>
<tr>
<td>Butylate</td>
<td>Herbicide</td>
<td>22</td>
<td>0.82</td>
<td>0.41</td>
<td>0.60</td>
<td>0.05</td>
<td>0.74</td>
</tr>
<tr>
<td>Carbofuran</td>
<td>Insecticide</td>
<td>76</td>
<td>0.09</td>
<td>0.95</td>
<td>0.05</td>
<td>0.08</td>
<td>0.92</td>
</tr>
<tr>
<td>Chlorimuron</td>
<td>Herbicide</td>
<td>27</td>
<td>0.71</td>
<td>0.35</td>
<td>0.65</td>
<td>0.07</td>
<td>0.56</td>
</tr>
<tr>
<td>Cyanazine</td>
<td>Herbicide</td>
<td>17</td>
<td>0.05</td>
<td>0.98</td>
<td>0.03</td>
<td>0.21</td>
<td>0.73</td>
</tr>
<tr>
<td>EPTC</td>
<td>Herbicide</td>
<td>121</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.34</td>
<td>0.79</td>
</tr>
<tr>
<td>Fluometuron</td>
<td>Herbicide</td>
<td>17</td>
<td>0.05</td>
<td>0.98</td>
<td>0.03</td>
<td>0.21</td>
<td>0.73</td>
</tr>
<tr>
<td>Fotonos</td>
<td>Insecticide</td>
<td>121</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.34</td>
<td>0.79</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>Herbicide</td>
<td>27</td>
<td>0.05</td>
<td>0.98</td>
<td>0.03</td>
<td>0.21</td>
<td>0.73</td>
</tr>
<tr>
<td>Limuron</td>
<td>Herbicide</td>
<td>11</td>
<td>1.00</td>
<td>0.52</td>
<td>0.52</td>
<td>0.20</td>
<td>0.16</td>
</tr>
<tr>
<td>Methomyl</td>
<td>Insecticide</td>
<td>130</td>
<td>0.01</td>
<td>1.00</td>
<td>0.00</td>
<td>(0.07)</td>
<td>0.88</td>
</tr>
<tr>
<td>Methyl parathion</td>
<td>Insecticide</td>
<td>44</td>
<td>0.38</td>
<td>0.81</td>
<td>0.19</td>
<td>0.05</td>
<td>0.74</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>Herbicide</td>
<td>55</td>
<td>0.65</td>
<td>0.68</td>
<td>0.32</td>
<td>0.10</td>
<td>0.64</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>Herbicide</td>
<td>14</td>
<td>0.05</td>
<td>0.98</td>
<td>0.02</td>
<td>0.28</td>
<td>0.59</td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>Herbicide</td>
<td>84</td>
<td>0.38</td>
<td>0.81</td>
<td>0.19</td>
<td>0.05</td>
<td>0.74</td>
</tr>
<tr>
<td>Northuronz</td>
<td>Herbicide</td>
<td>121</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.17</td>
<td>0.84</td>
</tr>
<tr>
<td>Oxamyl</td>
<td>Insecticide</td>
<td>14</td>
<td>0.05</td>
<td>0.98</td>
<td>0.02</td>
<td>0.28</td>
<td>0.59</td>
</tr>
<tr>
<td>Phorate</td>
<td>Insecticide</td>
<td>13</td>
<td>1.00</td>
<td>0.53</td>
<td>0.50</td>
<td>(0.17)</td>
<td>0.37</td>
</tr>
<tr>
<td>Propanil</td>
<td>Herbicide</td>
<td>76</td>
<td>0.51</td>
<td>0.75</td>
<td>0.25</td>
<td>0.04</td>
<td>0.83</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>Fungicide</td>
<td>39</td>
<td>0.04</td>
<td>0.98</td>
<td>0.02</td>
<td>0.16</td>
<td>0.91</td>
</tr>
<tr>
<td>S-Metolachlor</td>
<td>Herbicide</td>
<td>76</td>
<td>0.51</td>
<td>0.75</td>
<td>0.25</td>
<td>0.04</td>
<td>0.83</td>
</tr>
<tr>
<td>Terbufos</td>
<td>Insecticide</td>
<td>90</td>
<td>0.03</td>
<td>0.99</td>
<td>0.01</td>
<td>0.10</td>
<td>0.95</td>
</tr>
<tr>
<td>Trifluralin</td>
<td>Herbicide</td>
<td>13</td>
<td>1.00</td>
<td>0.53</td>
<td>0.50</td>
<td>(0.17)</td>
<td>0.37</td>
</tr>
<tr>
<td>Cotton</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetochlor</td>
<td>Herbicide</td>
<td>99</td>
<td>0.01</td>
<td>1.00</td>
<td>0.00</td>
<td>0.13</td>
<td>0.82</td>
</tr>
<tr>
<td>Acifluorfen</td>
<td>Herbicide</td>
<td>146</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.07</td>
<td>0.97</td>
</tr>
<tr>
<td>Alachlor</td>
<td>Herbicide</td>
<td>17</td>
<td>0.04</td>
<td>0.22</td>
<td>0.98</td>
<td>(0.30)</td>
<td>0.34</td>
</tr>
<tr>
<td>Atrazine</td>
<td>Herbicide</td>
<td>62</td>
<td>0.96</td>
<td>0.53</td>
<td>0.48</td>
<td>(0.03)</td>
<td>0.85</td>
</tr>
<tr>
<td>Bentazon</td>
<td>Herbicide</td>
<td>16</td>
<td>0.19</td>
<td>0.10</td>
<td>0.91</td>
<td>(0.16)</td>
<td>0.81</td>
</tr>
<tr>
<td>Bromoxynil</td>
<td>Herbicide</td>
<td>22</td>
<td>0.82</td>
<td>0.41</td>
<td>0.60</td>
<td>0.05</td>
<td>0.74</td>
</tr>
<tr>
<td>Butylate</td>
<td>Herbicide</td>
<td>76</td>
<td>0.09</td>
<td>0.95</td>
<td>0.05</td>
<td>0.08</td>
<td>0.92</td>
</tr>
<tr>
<td>Carbofuran</td>
<td>Insecticide</td>
<td>76</td>
<td>0.09</td>
<td>0.95</td>
<td>0.05</td>
<td>0.08</td>
<td>0.92</td>
</tr>
<tr>
<td>Chlorimuron</td>
<td>Herbicide</td>
<td>27</td>
<td>0.71</td>
<td>0.35</td>
<td>0.65</td>
<td>0.07</td>
<td>0.56</td>
</tr>
<tr>
<td>Cyanazine</td>
<td>Herbicide</td>
<td>17</td>
<td>0.05</td>
<td>0.98</td>
<td>0.03</td>
<td>0.21</td>
<td>0.73</td>
</tr>
<tr>
<td>EPTC</td>
<td>Herbicide</td>
<td>121</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.34</td>
<td>0.79</td>
</tr>
<tr>
<td>Fluometuron</td>
<td>Herbicide</td>
<td>17</td>
<td>0.05</td>
<td>0.98</td>
<td>0.03</td>
<td>0.21</td>
<td>0.73</td>
</tr>
<tr>
<td>Fotonos</td>
<td>Insecticide</td>
<td>121</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.34</td>
<td>0.79</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>Herbicide</td>
<td>27</td>
<td>0.05</td>
<td>0.98</td>
<td>0.03</td>
<td>0.21</td>
<td>0.73</td>
</tr>
<tr>
<td>Limuron</td>
<td>Herbicide</td>
<td>11</td>
<td>1.00</td>
<td>0.52</td>
<td>0.52</td>
<td>0.20</td>
<td>0.16</td>
</tr>
<tr>
<td>Methomyl</td>
<td>Insecticide</td>
<td>130</td>
<td>0.01</td>
<td>1.00</td>
<td>0.00</td>
<td>(0.07)</td>
<td>0.88</td>
</tr>
<tr>
<td>Methyl parathion</td>
<td>Insecticide</td>
<td>44</td>
<td>0.38</td>
<td>0.81</td>
<td>0.19</td>
<td>0.05</td>
<td>0.74</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>Herbicide</td>
<td>55</td>
<td>0.65</td>
<td>0.68</td>
<td>0.32</td>
<td>0.10</td>
<td>0.64</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>Herbicide</td>
<td>45</td>
<td>0.22</td>
<td>0.89</td>
<td>0.11</td>
<td>0.05</td>
<td>0.71</td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>Herbicide</td>
<td>45</td>
<td>0.22</td>
<td>0.89</td>
<td>0.11</td>
<td>0.05</td>
<td>0.71</td>
</tr>
<tr>
<td>Northuronz</td>
<td>Herbicide</td>
<td>45</td>
<td>0.22</td>
<td>0.89</td>
<td>0.11</td>
<td>0.05</td>
<td>0.71</td>
</tr>
<tr>
<td>Pesticide</td>
<td>Type</td>
<td>N</td>
<td>Wilcoxon signed rank, P (two-tailed)</td>
<td>Wilcoxon signed rank, P (NASS > EPest)</td>
<td>Median relative error</td>
<td>Spearman correlation coefficient</td>
<td>N</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
<td>----</td>
<td>------------------------------------</td>
<td>--------------------------------------</td>
<td>-----------------------</td>
<td>---------------------------------</td>
<td>----</td>
</tr>
<tr>
<td>Acetochlor</td>
<td>Herbicide</td>
<td>68</td>
<td>0.29</td>
<td>0.65</td>
<td>0.01</td>
<td>0.91</td>
<td>60</td>
</tr>
<tr>
<td>Acifluorfen</td>
<td>Herbicide</td>
<td>89</td>
<td>0.00</td>
<td>0.00</td>
<td>0.19</td>
<td>0.75</td>
<td>60</td>
</tr>
<tr>
<td>Alachlor</td>
<td>Herbicide</td>
<td>108</td>
<td>0.02</td>
<td>0.01</td>
<td>0.18</td>
<td>0.80</td>
<td>60</td>
</tr>
<tr>
<td>Atrazine</td>
<td>Herbicide</td>
<td>100</td>
<td>0.58</td>
<td>0.29</td>
<td>0.71</td>
<td>(0.01)</td>
<td>60</td>
</tr>
<tr>
<td>Bentazon</td>
<td>Herbicide</td>
<td>125</td>
<td>0.82</td>
<td>0.96</td>
<td>0.04</td>
<td>0.82</td>
<td>60</td>
</tr>
<tr>
<td>Bromoxynil</td>
<td>Herbicide</td>
<td>136</td>
<td>0.64</td>
<td>0.69</td>
<td>0.32</td>
<td>0.22</td>
<td>60</td>
</tr>
<tr>
<td>Butylate</td>
<td>Herbicide</td>
<td>147</td>
<td>0.10</td>
<td>0.05</td>
<td>0.95</td>
<td>(0.05)</td>
<td>60</td>
</tr>
<tr>
<td>Carbofuran</td>
<td>Insecticide</td>
<td>158</td>
<td>0.64</td>
<td>0.69</td>
<td>0.32</td>
<td>0.22</td>
<td>60</td>
</tr>
<tr>
<td>Chlorimuron</td>
<td>Herbicide</td>
<td>169</td>
<td>0.82</td>
<td>0.96</td>
<td>0.04</td>
<td>0.82</td>
<td>60</td>
</tr>
<tr>
<td>Cyanazine</td>
<td>Herbicide</td>
<td>170</td>
<td>0.64</td>
<td>0.69</td>
<td>0.32</td>
<td>0.22</td>
<td>60</td>
</tr>
<tr>
<td>EPTC</td>
<td>Herbicide</td>
<td>181</td>
<td>0.82</td>
<td>0.96</td>
<td>0.04</td>
<td>0.82</td>
<td>60</td>
</tr>
<tr>
<td>Fluometuron</td>
<td>Herbicide</td>
<td>192</td>
<td>0.64</td>
<td>0.69</td>
<td>0.32</td>
<td>0.22</td>
<td>60</td>
</tr>
<tr>
<td>Fonofos</td>
<td>Insecticide</td>
<td>203</td>
<td>0.82</td>
<td>0.96</td>
<td>0.04</td>
<td>0.82</td>
<td>60</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>Herbicide</td>
<td>214</td>
<td>0.64</td>
<td>0.69</td>
<td>0.32</td>
<td>0.22</td>
<td>60</td>
</tr>
<tr>
<td>Linuron</td>
<td>Herbicide</td>
<td>225</td>
<td>0.82</td>
<td>0.96</td>
<td>0.04</td>
<td>0.82</td>
<td>60</td>
</tr>
<tr>
<td>Methomyl</td>
<td>Insecticide</td>
<td>236</td>
<td>0.64</td>
<td>0.69</td>
<td>0.32</td>
<td>0.22</td>
<td>60</td>
</tr>
<tr>
<td>Methyl parathion</td>
<td>Insecticide</td>
<td>247</td>
<td>0.64</td>
<td>0.69</td>
<td>0.32</td>
<td>0.22</td>
<td>60</td>
</tr>
<tr>
<td>Metolachlor</td>
<td>Herbicide</td>
<td>258</td>
<td>0.82</td>
<td>0.96</td>
<td>0.04</td>
<td>0.82</td>
<td>60</td>
</tr>
<tr>
<td>Metribuzin</td>
<td>Herbicide</td>
<td>269</td>
<td>0.82</td>
<td>0.96</td>
<td>0.04</td>
<td>0.82</td>
<td>60</td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>Herbicide</td>
<td>280</td>
<td>0.82</td>
<td>0.96</td>
<td>0.04</td>
<td>0.82</td>
<td>60</td>
</tr>
<tr>
<td>Norflurazon</td>
<td>Herbicide</td>
<td>291</td>
<td>0.82</td>
<td>0.96</td>
<td>0.04</td>
<td>0.82</td>
<td>60</td>
</tr>
<tr>
<td>Oxamyl</td>
<td>Insecticide</td>
<td>302</td>
<td>0.82</td>
<td>0.96</td>
<td>0.04</td>
<td>0.82</td>
<td>60</td>
</tr>
<tr>
<td>Phorate</td>
<td>Insecticide</td>
<td>313</td>
<td>0.82</td>
<td>0.96</td>
<td>0.04</td>
<td>0.82</td>
<td>60</td>
</tr>
<tr>
<td>Propanil</td>
<td>Herbicide</td>
<td>324</td>
<td>0.82</td>
<td>0.96</td>
<td>0.04</td>
<td>0.82</td>
<td>60</td>
</tr>
<tr>
<td>Propiconazole</td>
<td>Fungicide</td>
<td>335</td>
<td>0.82</td>
<td>0.96</td>
<td>0.04</td>
<td>0.82</td>
<td>60</td>
</tr>
<tr>
<td>S-Metolachlor</td>
<td>Herbicide</td>
<td>346</td>
<td>0.82</td>
<td>0.96</td>
<td>0.04</td>
<td>0.82</td>
<td>60</td>
</tr>
<tr>
<td>Terbufos</td>
<td>Insecticide</td>
<td>357</td>
<td>0.82</td>
<td>0.96</td>
<td>0.04</td>
<td>0.82</td>
<td>60</td>
</tr>
<tr>
<td>Triallate</td>
<td>Herbicide</td>
<td>368</td>
<td>0.82</td>
<td>0.96</td>
<td>0.04</td>
<td>0.82</td>
<td>60</td>
</tr>
<tr>
<td>Trifluralin</td>
<td>Herbicide</td>
<td>379</td>
<td>0.82</td>
<td>0.96</td>
<td>0.04</td>
<td>0.82</td>
<td>60</td>
</tr>
</tbody>
</table>
Table 4. Summary of statistics from comparison of EPest-high and National Agricultural Statistics Service (NASS) pesticide-by-crop estimates.—Continued

[Abbreviations: N, number of estimates compared; P, probability of significance; <, less than; >, greater than; –, no data]

<table>
<thead>
<tr>
<th>Pesticide</th>
<th>Type</th>
<th>N</th>
<th>Wilcoxon signed rank, P (two-tailed)</th>
<th>Wilcoxon signed rank, P (NASS > EPest)</th>
<th>Wilcoxon signed rank, P (NASS < EPest)</th>
<th>Median relative error</th>
<th>Spearman correlation coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Winter wheat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acetochlor</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acifluorfen</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alachlor</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Atrazine</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bentazon</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromoxynil</td>
<td>Herbicide</td>
<td>29</td>
<td>0.23</td>
<td>0.89</td>
<td>0.11</td>
<td>0.39</td>
<td>0.40</td>
</tr>
<tr>
<td>Butylate</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carbofuran</td>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorimuron</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyanazine</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EPTC</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluometuron</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fonofos</td>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glyphosate</td>
<td>Herbicide</td>
<td>38</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
<td>(0.46)</td>
<td>0.58</td>
</tr>
<tr>
<td>Linuron</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methomyl</td>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Methyl parathion</td>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metolachlor</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metribuzin</td>
<td>Herbicide</td>
<td>16</td>
<td>0.60</td>
<td>0.72</td>
<td>0.30</td>
<td>(0.13)</td>
<td>0.16</td>
</tr>
<tr>
<td>Nicosulfuron</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Norflurazon</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oxamyl</td>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phorate</td>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propanil</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Propiconazole</td>
<td>Fungicide</td>
<td>14</td>
<td>0.00</td>
<td>1.00</td>
<td>0.00</td>
<td>0.92</td>
<td>0.65</td>
</tr>
<tr>
<td>(\text{S})-Metolachlor</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terbufos</td>
<td>Insecticide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Triallate</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trifluralin</td>
<td>Herbicide</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rice</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results
Comparisons of E Pest-low tended to show stronger correlation to NASS use estimates than E Pest-high and also had a greater number of RE values less than 0.15, which, along with fewer significant differences between medians, indicated that E Pest-low totals better approximated NASS use estimates than E Pest-high overall. In general, however, the majority of the comparisons of estimates showed agreement, although low sample size limited the power of the tests for some pesticide-by-crop combinations.

Comparisons of E Pest-low and E Pest-high crop-pesticide combinations with NASS use estimates were further examined to evaluate differences between the estimates. These comparisons provide an understanding of the types and degrees of differences between E Pest and NASS estimates and how the statistical tests summarize them.

Herbicide Estimate Comparisons between E Pest and NASS

Statistically significant differences in median estimates between the methods are important to understand because they can provide information about similarities and differences in the estimates. One or both E Pest medians for 11 of the 21 herbicides were significantly different than NASS median use estimates (tables 3 and 4). For six of these herbicides—atrazine, bentazon, fluometuron, glyphosate, metolachlor, and nicosulfuron—both E Pest-low and E Pest-high medians differed significantly from NASS median use estimates. In addition, E Pest-high (but not E Pest-low) medians for alachlor, metribuzin, S-metolachlor, and trifluralin were significantly different from NASS median use estimates, and E Pest-low (but not E Pest-high) medians for butylate were significantly different from NASS median use estimates. Use estimates for more than one crop were compared for some pesticides, such as metolachlor and bentazon, and both E Pest medians (low and high) were significantly different from NASS median use estimates for some but not all of the crops that were compared. For example, E Pest-low and E Pest-high bentazon medians were significantly different than NASS median use estimates for corn but not soybeans.

Examining the data and statistical results of the pesticide-by-crop comparisons can help to better assess and understand how well the E Pest method approximated current NASS pesticide-use estimates. The following sections present the data graphically and discuss the results of the statistical tests for a selection of the pesticide-by-crop combinations that showed significant differences for one or both methods. For all pesticide-by-crop combinations presented, two plots are shown: (1) a scatterplot of E Pest-low and NASS state pesticide-use totals for the years compared (only plots of E Pest-low estimates were used because they are similar to the E Pest-high versions of the scatterplots) and (2) a plot of differences between E Pest estimates and NASS state pesticide-use estimates on a common scale, organized by USDA Farm Production Regions. Because their boundaries conform to state boundaries, Farm Production Regions (fig. 11) were selected rather than the USDA Farm Resource Regions that were used to calculate E Pest regional rates.
Alachlor

For 19 states and most of the years from 1992 through 2003, 99 E Pest-low and E Pest-high estimates of alachlor use on corn were compared with NASS estimates. Only E Pest-high estimates significantly differed (p < 0.05) from NASS use estimates, but both E Pest totals tended to be greater than NASS totals. The medians of the RE distributions comparing E Pest-low and E Pest-high to NASS estimates were 8 and 13 percent greater, respectively, indicating a general tendency for E Pest estimates to be greater than NASS estimates. Correlation coefficients for E Pest-low and NASS comparisons were 0.83 and were 0.82 for E Pest-high. The relation between E Pest-low and NASS estimates for alachlor is shown in figure 12A, and the differences between NASS estimates and both E Pest-low and E Pest-high are shown by region and state in figure 12B.

The majority of E Pest-low and E Pest-high estimates differed from NASS use estimates by less than a factor of two (fig. 12B), and most E Pest and NASS use estimates followed similar trends use for the years compared. Of the approximately 20 percent (20 of 99) of E Pest-high estimates that were more than double the NASS estimate, most were in the Corn Belt and Lake States regions.

Figure 12. Comparison of EPest and National Agricultural Statistics Service (NASS) state estimates of alachlor use on corn: (A) EPest-low estimates compared to NASS estimates, and (B) Difference between EPest estimates and NASS estimates ($\log_{10}\text{EPest} - \log_{10}\text{NASS}$).
Atrazine

For various years from 1992 to 2003, 146 EPest-low and EPest-high estimates of atrazine use on corn were compared with NASS use estimates for 20 states located in the Appalachian, Corn Belt, Lake States, Mountain, Northeast, Northern Plains, Southeast, and Southern Plains regions. Both EPest-low and EPest-high estimates were significantly different than NASS use estimates ($p < 0.05$). The medians of the RE distributions comparing EPest-low and EPest-high to NASS estimates were both 7 percent greater, indicating a general tendency for EPest estimates to be slightly greater than NASS estimates. Both EPest-low and EPest-high had correlation coefficients of 0.97 with NASS use estimates, which were among the strongest correlations between pesticide use estimates in this study. The relation between EPest and NASS estimates of atrazine estimates is shown in figure 13A, and the differences between NASS estimates and both EPest-low and EPest-high estimates are shown by region and state in figure 13B.

Almost all of the EPest and NASS estimates (142 of 146) differed by less than a factor of two (fig. 13B), but a majority of EPest estimates were slightly greater than NASS estimates. EPest and NASS use estimates were about the same for the Appalachian, Corn Belt, Northeast, and Southeast regions, but greater differences were found for one or more estimates from the Lake States, Mountain, and Northern Plains regions.

Bentazon

For various years from 1992 through 2001, 17 EPest-low and EPest-high estimates of bentazon use on corn were compared with NASS estimates for four states from the Corn Belt and Lake States regions. Both EPest-low and EPest-high estimates significantly differed from NASS use estimates ($p < 0.05$). The medians of the RE distributions comparing EPest-low and EPest-high to NASS estimates were 39 and 30 percent less, respectively, indicating a general tendency for EPest estimates to be less than NASS estimates. The correlation coefficients for the relation between the EPest and NASS estimates were 0.42 for EPest-low and 0.34 for EPest-high. The relation between EPest-low and NASS estimates of bentazon use on corn is shown in figure 14A, and the differences between NASS estimates and both EPest-low and EPest-high estimates are shown by region and state in figure 14B.

About one-half (9 of 17) of the EPest-low estimates and 65 percent (11 of 17) of the EPest-high estimates differed by less than a factor of two from NASS estimates. There were large differences between the EPest estimates and NASS use estimates for some states and years, which, in conjunction with a relatively small sample size, likely contributes to the poor correlation between the estimates.
A. EPest-low estimates of atrazine use on corn compared to NASS estimates

EXPLANATION
- Colorado
- Georgia
- Illinois
- Indiana
- Iowa
- Kansas
- Kentucky
- Michigan
- Minnesota
- Missouri
- Nebraska
- New York
- North Carolina
- North Dakota
- Ohio
- Pennsylvania
- South Carolina
- South Dakota
- Texas
- Wisconsin

B. Difference between EPest estimates of atrazine use on corn and NASS estimates

EXPLANATION
- EPest high
- EPest low
- Number of comparisons

Figure 13. Comparison of EPest and National Agricultural Statistics Service (NASS) state estimates of atrazine use on corn: (A) EPest-low estimates compared to NASS estimates, and (B) Difference between EPest estimates and NASS estimates (\log_{10} EPest − \log_{10} NASS).
Figure 14. Comparison of EPest and National Agricultural Statistics Service (NASS) state estimates of bentazon use on corn: (A) EPest-low estimates compared to NASS estimates, and (B) Difference between EPest estimates and NASS estimates ($\log_{10} \text{EPest} - \log_{10} \text{NASS}$).
Butylate

Sixteen E Pest-low and E Pest-high estimates of butylate use on corn estimates were compared with NASS estimates for eight states from the Appalachian, Corn Belt, Northern Plains, and Southeast regions from 1992 through 1994. Only E Pest-low estimates significantly differed from NASS use estimates (p < 0.05). The medians of the RE distributions comparing E Pest-low and E Pest-high to NASS estimates were 47 and 16 percent less, respectively, indicating a general tendency for E Pest estimates to be less than NASS estimates. The correlation coefficient for comparison to NASS estimates to E Pest-low was 0.91 and was 0.81 for E Pest-high. The relation between E Pest-low and NASS estimates for butylate use is shown in figure 15A, and the differences between NASS estimates and both E Pest-low and E Pest-high are shown by region and state in figure 15B.

The majority of the E Pest estimates (14 of 16 E Pest-low and 10 of 16 E Pest-high) were less than NASS estimates, but there was a fairly strong correlation between the estimates. Most E Pest-low butylate estimates were 15 to 80 percent less than NASS estimates.

Fluometuron

For various years from 1992 through 2005, 76 E Pest and NASS estimates of fluometuron use on cotton were compared for 11 states from the Appalachian, Corn Belt, Delta, Mountain, Southeast, and Southern Plains regions. Both E Pest-low and E Pest-high estimates significantly differed (p < 0.05) from NASS estimates. The medians of the RE distributions comparing E Pest-low and E Pest-high to NASS estimates were 12 and 14 percent greater, respectively, indicating a general tendency for E Pest estimates to be slightly greater than NASS estimates. Both E Pest-low and E Pest-high had correlation coefficients of 0.93 with NASS use estimates. The relation between E Pest-low and NASS estimates for fluometuron is shown in figure 16A, and the differences between NASS estimates and both E Pest-low and E Pest-high rate estimates are shown by region and state in figure 16B.

The majority of the E Pest-low (68 of 76) and E Pest-high (67 of 76) estimates differed from NASS use estimates by less than a factor of two. E Pest estimates tended to be greater than NASS estimates for most of the regions compared, including one or more estimates for states from the Mountain, Southeast and Southern Plains regions, which were at least twice NASS estimates. E Pest totals tended to be less than NASS use estimates for some of the states in the Appalachian, Delta, and Southern Plains, however.

Glyphosate

E Pest and NASS estimates of glyphosate use were compared for corn, cotton, soybeans, spring wheat, and winter wheat crops. E Pest estimates significantly differed from NASS estimates for the crops evaluated, except for soybeans, which also had the highest correlation coefficient between E Pest and NASS estimates and the lowest median RE. Comparisons of E Pest and NASS estimates for glyphosate use on spring and winter wheat crops showed low correlation coefficients and small sample sizes, which limits the power of the statistical tests. E Pest and NASS estimates of glyphosate use on corn and cotton are discussed in the following sections.

Corn

For glyphosate use on corn, 121 E Pest and NASS estimates were compared from 19 states from the Appalachian, Corn Belt, Lake States, Mountain, Northeast, Northern Plains, Southeast, and Southern Plains regions. Both E Pest-low and E Pest-high estimates significantly differed (p < 0.05) from NASS estimates. The medians of the RE distributions comparing E Pest-low and E Pest-high to NASS estimates were both 34 percent greater, indicating a general tendency for E Pest estimates to be greater than NASS estimates. Correlation coefficients for E Pest-low and NASS comparisons were 0.78 and were 0.79 for E Pest-high. The relation between E Pest-low and NASS estimates for glyphosate use on corn is shown in figure 17A, and the differences between NASS estimates and both E Pest-low and E Pest-high are shown by region and state in figure 17B.

Most of the E Pest and NASS estimates (90 or more of 121) differed by less than a factor of two. E Pest-low and E Pest-high estimates for the Corn Belt, Lake States, Northeast, Southeast, and Southern Plains regions tended to be greater than NASS estimates, and estimates for one or more states in each of these regions had E Pest estimates that were more than twice the NASS estimate (fig. 17B).
Figure 15. Comparison of Epest and National Agricultural Statistics Service (NASS) state estimates of butylate use on corn: (A) Epest-low estimates compared to NASS estimates, and (B) Difference between Epest estimates and NASS estimates ($\log_{10} \text{Epest} - \log_{10} \text{NASS}$).
Figure 16. Comparison of E Pest and National Agricultural Statistics Service (NASS) state estimates of fluometuron use on cotton:
(A) E Pest-low estimates compared to NASS estimates, and (B) Difference between E Pest estimates and NASS estimates (log$_{10}$ E Pest − log$_{10}$ NASS).
Figure 17. Comparison of EPest and National Agricultural Statistics Service (NASS) state estimates of glyphosate use on corn: (A) EPest-low estimates compared to NASS estimates, and (B) Difference between EPest estimates and NASS estimates ($\log_{10} \text{EPest} - \log_{10} \text{NASS}$).
Cotton

For various years from 1992 through 2005, 83 EPest-low and EPest-high estimates of glyphosate use on cotton were compared with NASS estimates for 12 states from Appalachian, Corn Belt, Delta, Mountain, Pacific, Southeast, and Southern Plains regions. Both EPest-low and EPest-high estimates significantly differed (p < 0.05) from NASS use estimates. The medians of the RE distributions comparing EPest-low and EPest-high to NASS estimates were both 30 percent greater, indicating a general tendency for EPest estimates to be greater than NASS estimates. Correlation coefficients for EPest-low and NASS comparisons were 0.93 and were 0.92 for EPest-high. The relation between EPest and NASS estimates of glyphosate use on cotton is shown in figure 18, and the differences between NASS estimates and both EPest-low and EPest-high estimates are shown by region and state in figure 18B.

Most EPest and NASS estimates (63 of 83) differed by less than a factor of two. EPest estimates for the Appalachian, Delta and Corn Belt regions bracketed NASS use estimates, whereas in most other regions, EPest estimates were greater than NASS use estimates. One reason for this difference could be that EPest pesticide totals include pesticide use on both upland and Pima cotton, whereas NASS reports pesticide use for upland cotton only.

Metolachlor

Corn

For various years from 1992 through 2003, 130 EPest-low and EPest-high estimates of metolachlor use on corn were compared with NASS estimates for 18 states from the Appalachian, Corn Belt, Lake States, Mountain, Northeast, and Northern Plains regions. Both EPest-low and EPest-high estimates significantly differed (p < 0.05) from NASS use estimates. The medians of the RE distributions comparing EPest-low and EPest-high to NASS estimates were 10 and 7 percent lower, respectively, indicating a general tendency for EPest estimates to be less than NASS estimates. Correlation coefficients for EPest-low and NASS comparisons were 0.76 and were 0.75 for EPest-high. The relation between EPest-low and NASS estimates of metolachlor use on corn is shown in figure 20, and the differences between NASS estimates and both EPest-low and EPest-high estimates are shown by region and state in figure 20B.

The majority (71 of 89) of EPest and NASS estimates differed by less than a factor of two (fig. 20B). EPest estimates for most regions tended to be greater than NASS estimates, but in the Appalachian region, they tended to be less than NASS estimates.
Figure 18. Comparison of EPest and National Agricultural Statistics Service (NASS) state estimates of glyphosate use on cotton: (A) EPest-low estimates compared to NASS estimates, and (B) Difference between EPest estimates and NASS estimates ($\log_{10} \text{EPest} - \log_{10} \text{NASS}$).
Figure 19. Comparison of EPest and National Agricultural Statistics Service (NASS) state estimates of metolachlor use on corn: (A) EPest-low estimates compared to NASS estimates, and (B) Difference between EPest estimates and NASS estimates ($\log_{10} \text{EPest} - \log_{10} \text{NASS}$).
Figure 20. Comparison of EPest and National Agricultural Statistics Service (NASS) state estimates of metolachlor use on soybeans: (A) EPest-low estimates compared to NASS estimates, and (B) Difference between EPest estimates and NASS estimates ($\log_{10} \text{EPest} - \log_{10} \text{NASS}$).

Metribuzin

For various years from 1992 through 2006, 108 EPest-low and Epest-high estimates of metribuzin use on soybeans were compared with NASS estimates in 19 states located in the Appalachian, Corn Belt, Delta, Lake States, Northeast, and Southeast regions. Only EPest-high estimates were significantly different (p < 0.05) from NASS estimates. The medians of the RE distributions comparing EPest-low and EPest-high to NASS estimates were 12 and 18 percent greater, respectively, indicating a general tendency for EPest estimates to be slightly greater than NASS estimates. Correlation coefficients for EPest-low and NASS comparisons were 0.81 and were 0.80 for EPest-high. The relation between EPest-low and NASS estimates of metribuzin use is shown in figure 21A, and the differences between NASS estimates and both EPest-low and EPest-high estimates are shown by region and state in figure 21B.

The majority of EPest estimates were within a factor of two of NASS estimates (fig. 21B). EPest estimates for all of the regions bracketed NASS estimates, but estimates from Arkansas and Nebraska showed some large differences.

Nicosulfuron

For various years from 1992 through 2003, 127 EPest-low and EPest-high estimates of nicosulfuron use on corn were compared with NASS estimates for 20 states located in Appalachian, Corn Belt, Lake States, Mountain, Northeast, Northern Plains, Southeast, and Southern Plains regions. EPest-low and EPest-high estimates significantly differed (p < 0.05) from NASS estimates. The medians of the RE distributions comparing EPest-low and EPest-high to NASS estimates were 14 and 17 percent greater, respectively, indicating a general tendency for EPest estimates to be greater than NASS estimates. Correlation coefficients for EPest-low and NASS comparisons were 0.84 for both EPest-low and EPest-high. The relation between EPest-low and NASS estimates of nicosulfuron use on corn is shown in figure 22A, and the differences between NASS estimates and both EPest-low and EPest-high estimates are shown by region and state in figure 22B.

Most of the EPest estimates were greater than NASS estimates, and the majority (98 of 127) of comparisons differed by less than a factor of two, although one or more EPest estimates from the Appalachian, Corn Belt, Lake States, Northeast, Northern Plains, and Southern Plains regions were at least twice NASS estimates. For some of the same states in these regions, however, EPest totals were half or less of NASS estimates.

S-Metolachlor

For 17 states from the Appalachian, Corn Belt, Lake States, Mountain, Northeast, Northern, and Southern Plains regions from 2001 through 2003, 39 EPest-low and EPest-high estimates of S-metolachlor use on corn were compared with NASS estimates. Only EPest-high estimates significantly differed (p < 0.05) from NASS estimates. The medians of the RE distributions comparing EPest-low and EPest-high to NASS estimates were 8 and 16 percent greater, respectively, indicating a general tendency for EPest estimates to be slightly greater than NASS estimates. Correlation coefficients for EPest-low and NASS comparisons were 0.90 and were 0.91 for EPest-high. The relation between EPest and NASS estimates of S-metolachlor use is shown in figure 23A, and the differences between NASS estimates and both EPest-low and EPest-high estimates are shown by region and state in figure 23B.

EPest and NASS estimates for the majority (36 of 39) of states and years were within a factor of two (fig. 23B). EPest estimates for the Corn Belt, Mountain, Northern Plains, and Southern Plains regions tended to be greater than NASS estimates, whereas EPest estimates for the Lake States and Northeast tended to be less than NASS estimates.
Figure 21. Comparison of EPest and National Agricultural Statistics Service (NASS) state estimates of metribuzin use on soybeans: (A) EPest-low estimates compared to NASS estimates, and (B) Difference between EPest estimates and NASS estimates ($\log_{10} \text{EPest} - \log_{10} \text{NASS}$).

Figure 22. Comparison of EPest and National Agricultural Statistics Service (NASS) state estimates of nicosulfuron use on corn: (A) EPest-low estimates compared to NASS estimates, and (B) Difference between EPest estimates and NASS estimates ($\log_{10} \text{EPest} - \log_{10} \text{NASS}$).
Figure 23. Comparison of E Pest and National Agricultural Statistics Service (NASS) state estimates of S-metolachlor use on corn: (A) E Pest-low estimates compared to NASS estimates, and (B) Difference between E Pest estimates and NASS estimates ($\log_{10} E\text{Pest} - \log_{10} \text{NASS}$).
Trifluralin

Cotton

For various years from 1992 through 2005, 90 EPest-low and EPest-high estimates of trifluralin use on cotton were compared with NASS estimates for 12 states from the Appalachian, Corn Belt, Mountain, Pacific, Southeast, and Southern Plains regions. Only EPest-high estimates significantly differed (p <0.05) from NASS estimates. The medians of the RE distributions comparing EPest-low and EPest-high to NASS estimates were 6 and 10 percent greater, respectively, indicating a general tendency for EPest estimates to be slightly greater than NASS estimates. Correlation coefficients for EPest and NASS comparisons were 0.95 for both EPest-low and EPest-high. The relation between EPest-low and NASS estimates of trifluralin use on cotton is shown in figure 24A, and the differences between NASS estimates and both EPest-low and EPest-high estimates are shown by region and state in figure 24B.

The majority of EPest estimates differed from NASS estimates by less than a factor of two. The EPest estimates for most of the states in a particular region were evenly distributed around NASS use estimates. The strong correlation between estimates was driven by use estimates in Texas, which showed the least differences between EPest and NASS estimates of all the states.

Soybeans

For various years from 1992 through 2006, 97 EPest-low and EPest-high estimates of trifluralin use on soybeans were compared for 18 states from the Appalachian, Corn Belt, Delta, Lake States, Northeast, Southeast, and Northern Plains regions. Only EPest-high estimates significantly differed (p <0.05) from NASS estimates. The medians of the RE distributions comparing EPest-low and EPest-high to NASS estimates were 3 and 7 percent greater, respectively, indicating a general tendency for EPest estimates to be slightly greater than NASS estimates. Correlation coefficients for EPest and NASS comparisons were 0.91 for both EPest-low and EPest-high. The relation between EPest-low and NASS estimates of trifluralin use on soybeans is shown in figure 25A, and the differences between NASS estimates and both EPest-low and EPest-high estimates are shown by region and state in figure 25B.

The majority of EPest and NASS estimates were within a factor of two. One or more EPest and NASS estimates from every region except the Northern Plains differed by more than a factor of two. Iowa had greater trifluralin use on soybeans than other states.
Figure 24. Comparison of EPest and National Agricultural Statistics Service (NASS) state estimates of trifluralin use on cotton: (A) EPest-low estimates compared to NASS estimates, and (B) Difference between EPest estimates and NASS estimates ($\log_{10} \text{EPest} - \log_{10} \text{NASS}$).
Figure 25. Comparison of EPest and National Agricultural Statistics Service (NASS) state estimates of trifluralin use on soybeans: (A) EPest-low estimates compared to NASS estimates, and (B) Difference between EPest estimates and NASS estimates ($\log_{10}\text{EPest} - \log_{10}\text{NASS}$).
Insecticide Estimate Comparisons between EPest and NASS

EPest and NASS estimates were compared for seven insecticides used on corn, cotton, or both, as summarized in tables 3 and 4. Only 2 of the 10 insecticide comparisons had sample numbers greater than 50; both of these were not significant and had RE values of 0.1 or less, indicating agreement between the estimates. Most of the other comparisons were not significant and had RE values of 0.15 or less, but methomyl and methyl parathion estimates for cotton significantly differed and had RE values greater than 0.6, which are discussed in the following sections.

Methomyl

For various years from 1992 through 2003, 27 EPest-low and EPest-high estimates of methomyl use on cotton were compared with NASS estimates for 9 states from the Appalachian, Delta, Mountain, Pacific, Southeast, and Southern Plains regions. Only EPest-low estimates significantly differed (p < 0.05) from NASS estimates. The medians of the RE distributions comparing EPest-low and EPest-high to NASS estimates were 61 and 46 percent less, respectively, indicating a general tendency for EPest estimates to be less than NASS estimates. Correlation coefficients for EPest-low and NASS comparisons were 0.76 and were 0.74 for EPest-high. The relation between EPest-low and NASS estimates of methomyl use on cotton is shown in figure 26A, and the differences between NASS estimates and both EPest-low and EPest-high estimates are shown by region and state in figure 26B.

More than half of the EPest estimates were less than 50 percent of NASS estimates, although one EPest estimate from Arkansas was more than double the NASS estimate. The few EPest and NASS estimates for California, Georgia, and Texas were in closer agreement than the estimates for other states.

Methyl Parathion

For various years from 1992 through 2005, 50 EPest-low and EPest-high estimates of methyl parathion use on cotton were compared with NASS estimates for 8 states from the Appalachian, Corn Belt, Delta, Mountain, Southeast, and Southern Plains regions. Both EPest-low and EPest-high estimates significantly differed (p < 0.05) from NASS estimates. The medians of the RE distributions comparing EPest-low and EPest-high to NASS estimates were 78 and 69 percent less, respectively, indicating a general tendency for EPest estimates to be less than NASS estimates. Correlation coefficients for EPest-low and NASS comparisons were 0.47 and were 0.52 for EPest-high. The relation between EPest-low and NASS estimates of methyl parathion use on cotton is shown in figure 27A, and the differences between NASS estimates and both EPest-low and EPest-high estimates are shown by region and state in figure 27B.

Most EPest and NASS estimates (EPest-low 37 of 50 and EPest-high 34 of 50) differed by more than a factor of two. The majority of EPest-low and EPest-high estimates were less than half NASS estimates, but, conversely, some EPest totals were at least twice NASS estimates. Generally, agreement between the estimates for methyl parathion was poor, and the RE was among the largest of all of the pesticides compared.
Figure 26. Comparison of EPest and National Agricultural Statistics Service (NASS) state estimates of methomyl use on cotton: (A) EPest-low estimates compared to NASS estimates, and (B) Difference between EPest estimates and NASS estimates ($\log_{10} \text{EPest} - \log_{10} \text{NASS}$).
Figure 27. Comparison of EPest and National Agricultural Statistics Service (NASS) state estimates of methyl parathion use on cotton: (A) EPest-low estimates compared to NASS estimates, and (B) Difference between EPest estimates and NASS estimates (log₁₀ EPest – log₁₀ NASS).
Fungicide Estimate Comparisons between EPest and NASS—Propiconazole

For various years from 1993 to 2006, 14 EPest-low and EPest-high estimates of propiconazole use on winter wheat were compared with NASS estimates for 5 states from the Corn Belt, Lake States, Northern Plains, and Pacific regions. Only EPest-high estimates significantly differed (p <0.05) from NASS estimates. The medians of the RE distributions comparing EPest-low and EPest-high to NASS estimates were 27 and 92 percent greater, respectively, indicating a general tendency for EPest estimates to be greater than NASS estimates. Correlation coefficients for EPest-low and NASS comparisons were 0.78 and were 0.65 for EPest-high. The relation between EPest and NASS estimates of propiconazole use is shown in figure 28A (low) and 28B (high), and the differences between NASS estimates and both EPest-low and EPest-high estimates are shown by region and state in figure 28C.

About half of the EPest-low and EPest-high estimates differed from NASS estimates by less than a factor of two. Almost all EPest-high estimates were greater than NASS estimates, whereas more than half of the EPest-low estimates were lower than NASS estimates.
Figure 28. Comparison of EPest and National Agricultural Statistics Service (NASS) state estimates of propiconazole use on winter wheat: (A) EPest-low estimates compared to NASS estimates, (B) EPest-high estimates compared to NASS estimates, and (C) Difference between EPest estimates and NASS estimates (log₁₀ EPest – log₁₀ NASS).
Summary of Comparisons

EPest and NASS state estimates for as many as 34 states from 10 USDA Farm Production Regions were compared for 48 pesticide-by-crop combinations for various years from 1992 through 2006. These comparisons included 21 herbicides used on corn, cotton, rice, soybeans, spring wheat, or winter wheat; 7 insecticides used on corn or cotton; and 1 fungicide used on winter wheat.

Overall, 73 percent of the E Pest-low to NASS comparisons for herbicide-by-crop (27 of 37) and 60 percent of the comparisons for insecticide-by-crop (6 of 10) had medians of the RE distributions within 0.15. About 22 percent of the herbicide-by-crop (8 of 37) and 40 percent of the insecticide-by-crop (4 of 10) E Pest-low to NASS comparisons had medians of the RE distributions that indicated E Pest-low estimates tended to be lower than NASS estimates. Only two herbicide-by-crop E Pest-low to NASS comparisons, but none of the insecticide-by-crop comparisons, had medians of the RE distributions that indicated E Pest-low estimates tended to be greater than NASS estimates.

There was somewhat less agreement between E Pest-high and NASS estimates. About 60 percent of the E Pest-high to NASS comparisons for herbicide-by-crop and 30 percent of the comparisons for insecticide-by-crop had medians of the RE distributions within 0.15. About 16 percent of the herbicide-by-crop and 10 percent of the insecticide-by-crop E Pest-high to NASS comparisons had medians of the RE distributions that indicated E Pest-high estimates tended to be less than NASS estimates. About 22 percent of the herbicide-by-crop and 60 percent of the insecticide-by-crop E Pest-high to NASS comparisons had medians of the RE distributions that indicated E Pest-high tended to be greater than NASS estimates.

Overall, the comparisons between E Pest and NASS estimates generally support the representativeness and use of the E Pest method to estimate pesticide use. Most E Pest and NASS estimates for the same pesticides, crops, years, and states were not significantly different from each other. E Pest and NASS estimates were produced from different surveys of individual farm operations, and the methods used to expand the surveyed data to estimate state use also differed; therefore, some disagreement in the estimates is expected.

Applications of E Pest Use Data

Estimates of pesticide use developed by this study provide information on the amounts, distribution, and trends in agricultural use of 39 pesticides for 1992 through 2009. Maps showing the geographic distribution of estimated average annual pesticide use intensity in each county of the conterminous United States and a graph showing each pesticide’s national use-trend from 1992 through 2009 are provided at http://water.usgs.gov/nawqa/pnsp/usage/maps/.

The pesticide-use intensity estimates shown on the maps were calculated by dividing the pounds of pesticide applied annually to each county by the area of agricultural land (in square miles) in the county. These annual-use rates were applied to the satellite-based 2009 Cropland Data Layer (CDL) produced by the USDA (Johnson and Mueller, 2010). The CDL is a crop-specific land-cover dataset mapped at 56-meter resolution. Each 56-meter cell is assigned to one of over 100 agricultural or nonagricultural land-use classes. For the purpose of mapping pesticide-use intensity, the CDL was generalized into 1-kilometer cells. First, the CDL was divided equally into 1-meter cells and then it was converted into a binary raster with each cell labeled as either agriculture or non-agriculture and assigned a value of 1 or 0, respectively. The 1-meter cells were next aggregated to 1-kilometer cells, and the percentage of agricultural or non-agricultural land use in the 1-kilometer cell was calculated. County pesticide-use estimates were then multiplied by the percentage of agricultural land in each cell.

The county-level estimates are suitable for making national, regional, statewide, and watershed assessments of annual pesticide use during 1992–2009. Although estimates are provided by county to facilitate estimation of watershed-use rates for a wide variety of watersheds, there is a high degree of uncertainty in individual county-level estimates because (1) pesticide-by-crop use rates were developed on the basis of pesticide use on harvested acres in multi-county areas (CRDs) and then allocated to county harvested cropland; (2) pesticide-by-crop use rates were not available for all CRDs in the conterminous United States, and extrapolation methods were used to estimate pesticide use for some counties; and (3) it is possible that surveyed pesticide-by-crop use rates do not reflect all agricultural uses or crops grown.

For water-quality studies, estimates of pesticide use within watersheds and groundwater recharge areas can be used to assist with study design and to help explain and model pesticide occurrence in water resources. Information on pesticide use and other watershed characteristics serve as explanatory variables in regression models developed to predict concentrations of pesticides in streams and groundwater (Barbash and others, 2001; Stackelberg and others, 2006; Stone and Gilliom, 2009). Pesticide-use information has also been used to explain the atmospheric transport of agricultural chemicals from the area the pesticides were applied to other sites where they are detected in air and rain samples (Majewski and others, 1998). The availability of pesticide-use information for the 18-year study period enables assessments of the temporal and spatial variations in pesticide use that can relate these patterns to changes in water quality (Sullivan and others, 2009). The methods developed in this study are applicable to other agricultural pesticides and years.
Summary and Conclusions

A method was developed to estimate pesticide use (EPest) for 39 pesticides used on a variety of row crops, fruit, nut, and specialty crops grown throughout the conterminous United States for 1992 through 2009. EPest pesticide-by-crop rates were developed for individual crops on the basis of (1) surveyed pesticide-use reports from farm operations within CRDs and (2) harvested crop acreage reported by USDA Census of Agriculture and NASS annual crop surveys. EPest rates were developed for all crops that were surveyed in a particular year by dividing the pounds of a pesticide applied to each crop grown in the CRD by the harvested acreage for that crop. Not all crops were surveyed in each year and CRD; therefore, extrapolated rates for non-surveys CRDs, referred to as tier 1, tier 2, and regional EPest rates, were developed by using information from adjacent CRDs.

The EPest rates were applied to county harvested-crop acreage differently for surveyed CRDs with unreported pesticide-by-crop estimates to produce EPest-low and EPest-high estimates of pesticide use for every year from 1992 through 2009. If a CRD was surveyed, but there was no reported pesticide use, then the EPest-low method did not estimate pesticide use for the CRD; EPest-high treated these non-reported estimates as unsurveyed, and pesticide use was estimated on the basis of an EPest extrapolated rate. For both methods, if a CRD was not surveyed, then pesticide use was estimated by using EPest extrapolated rates, if possible.

About 45 percent of the national EPest-low and EPest-high annual pesticide-by-year estimates differed from one another by less than 25 percent, including the estimates for several of the most widely used pesticides, such as acetochlor, atrazine, glyphosate, and metolachlor. EPest-high estimates, however, were more than double EPest-low totals for six or more years for the pesticides alachlor, butylate, carbofuran, cyanazine, ethoprophos, linuron, methyl parathion, metolachlor, pebulate, propachlor, and terbacil. EPest extrapolated rates used to calculate EPest-high estimates contributed a significant amount to the national total for some pesticides and years for some specialty crops and major crops, such as corn and alfalfa, and land uses, such as summer fallow, pasture, and rangeland. In general, non-surveysed use represented a greater percentage of the national estimate for some pesticides and crops because some pesticides were reported less frequently and some crops were not surveyed as extensively during the latter part of the study. EPest tier 1, tier 2, and regional rates have inherently greater uncertainty than rates for surveyed CRDs because a pesticide could have been applied to a localized area in response to a pest infestation, while the same crop grown in another part of the same region would not be managed in the same way, which can result in misrepresentative estimates of pesticide use.

National and state annual estimates for a subset of the 39 pesticides were compared with data published by other sources. EPest-low and EPest-high national estimates for seven herbicides were compared with published data from the USEPA, NASS, and NPUD for three periods (1997, 2001–02, and 2006–07). Overall, there was agreement between EPest estimates and the estimates from USEPA and NPUD; however, EPest estimates tended to be greater than NASS estimates, which are not complete national estimates.

A second set of evaluations compared EPest state and state-by-crop estimates for selected pesticides with NASS estimates State estimates for 33 pesticides that had 5 or more estimates for a combination of states, crops, or years were evaluated, in addition to the estimates for 29 pesticides that had 10 or more state and year estimates for corn, cotton, soybeans, spring wheat, or winter wheat. Of the 33 pesticides evaluated, less than one-third—10 EPest-low and 8 EPest-high—had median RE values significantly different from zero based on the 95-percent confidence interval on the median. EPest-high estimates were mostly greater than NASS estimates when they differed significantly, whereas EPest-low estimates were more evenly distributed around NASS estimates when they differed significantly. EPest and NASS estimates for individual states and crops were compared for selected years from 1992 to 2006. This comparison was made for 48 pesticide-by-crop combinations, including 21 herbicides, 7 insecticides, and 1 fungicide used on corn, cotton, soybeans, rice, spring wheat, or winter wheat. Most EPest and NASS pesticide-by-crop estimates were not significantly different, had low median relative errors (RE < 0.15), and had relatively strong correlation coefficients (r > 0.75). EPest-low and EPest-high state estimates for some pesticide-by-crop combinations, however, were significantly different (p<0.5) from NASS estimates. Among the pesticide-by-crop estimationes compared, those that did show a significant difference between EPest and NASS estimates did not show clear or consistent patterns by pesticide type, crop, year, or state. EPest and NASS estimates were produced from different surveys of individual farm operations, and the methods used to expand the surveyed data to estimate state use also differed; therefore, some disagreement in the estimates is expected. The comparisons between EPest and NASS estimates generally support the representativeness and use of the EPest method to estimate pesticide use.
References Cited

Appendix 1. Summary of Epest-Low and Epest-High Annual National Totals by Pesticide and Crop Type.

Appendix 1 is available in Microsoft Excel® format at http://pubs.usgs.gov/sir/2013/5009/appendix1.xlsx

Appendix 2. Epest-Low and Epest-High Annual National Totals Derived from Epest Surveyed, Tier 1, Tier 2, and Regional Rate Estimates.

Appendix 2 is available in Microsoft Excel® format at http://pubs.usgs.gov/sir/2013/5009/appendix2.xlsx
For more information concerning this report, contact:

Director
U.S. Geological Survey
California Water Science Center
6000 J Street, Placer Hall
Sacramento, CA 95819
GS-W-CAWSC_WWW@usgs.gov

or visit our Web site at:
http://ca.water.usgs.gov